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Abstract

In this paper I study how PAYG pension systems of the notional defined contribution

type can be designed such that they remain financially stable in the presence of

increasing life expectancy. For this to happen two crucial parameters must be set in

an appropriate way. First, the remaining life expectancy has to be based on a cross-

section measure and, second, the notional interest rate has to include a correction

for labor force increases that are only due to rises in the retirement age which are

necessary to “neutralize” the increase in life expectancy. It is shown that the self-

stabilization is effective for various patterns of retirement behavior and also—under

certain assumptions—if life expectancy reaches an upper limit.
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1 Introduction

Pension systems around the world have come under severe pressure from the two-sided

demographic development: declining fertility rates and increasing life expectancy. The

latter aspect is of particular interest, since it represents an ongoing process with consider-

able and far-reaching budgetary consequences. For the EU-countries, e.g., life expectancy

at birth is projected to increase over the next 50 years by about 7.5 years. This increase

is one of the main factors behind the projected rise in the old-age dependency ratio from

25.4% in 2008 to 53.5% in 2050 (EPC, 2009). This development is a particular challenge

for pay-as-you-go (PAYG) pension systems. In their traditional organization PAYG sys-

tems are based on the implicit assumption of a stationary age structure while ideally they

should be designed in such a way as to automatically react to the steady increases in

longevity. The most recent issue of the OECD’s Pensions at a Glance deals in detail with

the links between life expectancy and retirement and it documents that “around half of

OECD countries have elements in their mandatory retirement-income provision that pro-

vide an automatic link between pensions and a change in life expectancy” (OECD 2011,

p. 81). In fact, the report continues to state that “the rapid spread of such life-expectancy

adjustments has a strong claim to be the most important innovation of pension policy

in recent years” (OECD 2011, p. 82). In a related paper Edward Whitehouse calls this

development a “quiet revolution in pension policy” (Whitehouse 2007, p. 5).

Despite this claim by the OECD that automatic life-expectancy-adjustments are a

“quiet revolution” and the “most important innovation” in pension policy there does not

exist much empirical and—even less though—theoretical work on the basic functioning,

the appropriate design and the main properties of these automatic mechanisms. In this

paper I try to fill this gap and focus on the effect of increasing life expectancy in notional

defined contribution (NDC) systems (cf. Holzmann & Palmer 2006). NDC systems are

of particular interest for a number of reasons. First, they are an increasingly popular

variant of the PAYG pension system and—starting with the pioneering work of Sweden—

currently around 10 countries have implemented a NDC framework. Second, international

institutions like the World Bank, the OECD and the European Commission use the NDC

structure as a useful reference point (if not benchmark) to discuss reform proposals and to

enhance the transnational portability of pension rights. Third, NDC systems are a natu-

ral starting point to analyze the linkage between life expectancy and retirement age since

they are explicitly designed in a way such as to react to demographic changes. As will be

described in a later section, NDC systems take increases in life expectancy into considera-
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tion when the notional capital (i.e. the accumulated contributions) is annuitized. Longer

life expectancy will, ceteris paribus, decrease pension benefits, while later retirement will

increase them.

While this basic mechanism has been one of the main rationales behind the intro-

duction and propagation of NDC systems, much less is known about the details of its

functioning and its optimal design. This, however, is important since self-stabilization

will only be achieved if the NDC system is built on accurate construction principles, as

will be shown in this paper. In particular, I will demonstrate that a good design involves

the determination of two crucial parameters. First, the “notional interest rate” (or the

“rate of return”) that specifies how past contributions to the pension system are revalued

over time.1 Second, the measure of “remaining life expectancy” that is used to calculate

the first pension benefit at the time of retirement.

The prevailing opinion on this topic is that one should use the growth rate of the wage

bill (or, to be precise, the sum of total contributions) as the notional interest rate2 and

the cohort (i.e. forecasted) life expectancy in order to determine the size of the pension

annuity.3 I will show that this conventional wisdom has to be corrected along both

dimensions. First, in as far as the measure of life expectancy is concerned I demonstrate

that it is sufficient to use periodic life expectancy to calculate the annuity. This is an

attractive feature since the determination of remaining life expectancy is then only based

on known, cross-section data and does not involve a process of (potentially controversial

and politicized) forecasting. Second, I also show that the use of the growth rate of the

wage bill is not appropriate in the case of increasing life expectancy. The reason for this

is straightforward. When average longevity increases then the cohort-specific retirement

age has to rise as well just in order to keep the proportion of retired years to working

years constant. This “neutralizing” postponement of retirement, however, increases by

itself the total size of the labor force even if the size of cohorts is constant. Using the

growth rate of the wage bill would thus grant an “excessive” rate of return thereby causing

a structural deficit of the pension system. The appropriate notional interest rate has to

be corrected for this effect. I show that a combination of this adjusted notional interest

1In the generic version of the NDC system the rate at which ongoing pension are adjusted over time
is also set equal to the notional interest rate.

2“Viewed from a macroeconomic perspective, the ‘natural’ rate of return for an NDC system is the
implicit return of a PAYG system: that is, the growth rate of the contribution bill” (Börsch-Supan 2003,
p. 38)

3“The generic NDC annuity embodies [. . .] cohort life expectancy at the time the annuity is claimed”
(Palmer 2006, p. 18).
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rate and period life expectancy as the concept to calculate the annuity establishes a self-

stabilizing social security system. Whether the budget is balanced in every period or only

over time depends on the pattern of retirement behavior. I show that the deficit is always

zero if each cohort chooses its retirement age in such a way as to fix the dependency ratio.

On the other hand, if the retirement age is assumed to be constant over time then the

budget is also (almost) balanced in every period. For an arbitrarily fluctuating pattern

of retirement ages, however, the balance will only be achieved in the long run.

These results are derived under the assumption that life expectancy increases in a

linear fashion. This is in line with the demographic literature. What is more, it has

been argued that this linear development is also the best prediction for the behavior of

life expectancy for the next 100 years (cf. Oeppen & Vaupel 2002). Nevertheless, I will

also discuss the case where life expectancy is assumed to reach a maximum age. I show

that the budgetary impact depends again on the development of retirement ages and

on the predictability of the halt in life expectancy. Under plausible assumptions about

both factors it can be shown that the adjustment process will also be compatible with a

balanced budget or even a budgetary surplus.

The related literature includes empirical analyses, simulation studies and also s small

number of theoretical papers. Whitehouse (2007), OECD (2011) and OECD (2012) con-

tain information about the links between life expectancy and various parameters in exist-

ing pension systems of OECD countries. Alho et al. (2005) and Auerbach & Lee (2009)

use stochastic simulation models in order to evaluate and compare the risk-sharing char-

acteristics of alternative public pension schemes. Since these models allow for a stochastic

development of mortality rates they also—implicitly—show how different systems react

to changing life expectancy. On the other hand, these papers do not include a systematic

discussion on the working and the different design features of automatic life expectancy

adjustments. Shoven & Goda (2008) and Heeringa & Bovenberg (2009) are related papers

that study how “life expectancy indexation” could be used to stabilize the budget of the

public pension systems in specific countries (the US and the Netherlands, respectively).

The latter work also contains a stylized model of the use of changes in the retirement

age in order to balance increases in longevity. The paper, however, does not compare

different formulations of such an indexation. Andersen (2008), on the other hand, uses a

two-period model to derive that a “social security system cannot be maintained by simply

indexing pension ages to longevity”. This is in contrast to the results of the present paper

and I will discuss later how to explain this discrepancy. Ludwig & Reiter (2010) study

the optimal policy response of a social planner in the presence of demographic shocks.
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Valdés-Prieto (2000) discusses the ability of NDC system to run on “auto-pilot” but he

mainly focuses on the role of changing fertility patterns. Settergren & Mikula (2006) and

Palmer (2006) present results that are related to the ones of the present paper although

they derive them in a different framework (involving the “turnover duration”) and they

also lack an explicit treatment of the case with constantly increasing life expectancy. I

will come back to some of the related literature in section 4.4.

The paper is structured as follows. In the next section I discuss the assumption about

the development of life expectancy and I present the structure of a general PAYG system.

In section 3 I then describe and formalize the main features of a NDC system and I discuss

the two main parameters: the notional interest rate and the measure of life expectancy.

In section 4 I show how one can determine these two parameters in order to design a NDC

system that is self-stabilizing in the case of constant cohort sizes and linearly increasing

life expectancy. In section 5 I analyze the case where life expectancy reaches an upper

limit and section 6 concludes.

2 The Model

2.1 Basic set-up

I work with a model in continuous time (cf. Bommier & Lee 2000). In every instant of

time t a generation is born that has size N(t) and lives for X(t) years. All members

of generation t start to work as soon as they are born and they remain in the labor

market for B(t) periods, earning a wage W (t + a) during each of these working periods

(a ∈ [0, B(t)]).4 Thereafter, they receive a pension benefit P (t, t + a) in each period of

retirement (a ∈ [B(t), X(t)]). While working, individuals pay contributions to the PAYG

pension system at rate τ(t + a). The (relative) pension level is defined as q(t, t + a) =
P (t,t+a)
W (t+a)

and the growth rate of wages is denoted by g(t), i.e. W (t) = W (0)e
∫ t
0 g(s) ds.

As far as the development of life expectancy is concerned I make a number of assump-

tions that allow for simple and intuitive expressions. First, I focus on a representative

member of generation t and I abstract from all intragenerational differences. In particular,

I assume that all members of a generation reach their cohort life expectancy X(t). Sec-

ond, I assume that the retirement age is non-decreasing over time, i.e. B(t+ dt) ≥ B(t).

This makes it possible to express all aggregate values in a compact form without the use

4I abstract here from the existence of an age-earnings profile. At each point in time all workers are
assumed to earn the same wage.

4



of “indicator variables”. Third, life expectancy is assumed to increase linearly over time:

X(t) = X(0) + γ·t, (1)

where 0 ≤ γ < 1. This assumption is in line with the empirical literature. Oeppen &

Vaupel (2002), e.g., analyze “record female life expectancy” (i.e. the highest value for

female life expectancy reported in any country for which data are available) from 1840

to 2000 and they show that it follows an almost perfect linear development with a slope

parameter of 1/4.5 This is confirmed by Lee (2003) who refers to a number of studies

that have found a linear trend in life expectancy for a large sample of industrial countries

with slope parameters between 0.15 and 0.25. There exists a long debate on whether it

is reasonable to assume a constant increase in life expectancy or whether it is better to

work with a model that assumes some biologically determined maximum age. I will come

back to this issue in a later section.

In order to be able to distinguish clearly between the viewpoint of generation t (i.e. the

one born in t) and the outlook of the pension system in period t I introduce two further

variables. X̃(t) stands for period life expectancy, i.e. the highest age observed in period

t. B̃(t), on the other hand, denotes the number of working years of the generation that

retires in period t. In general it will be the case that X̃(t) 6= X(t) and B̃(t) 6= B(t).

Period life expectancy in period t can be calculated from cohort life expectancy by

the following relation: X(t− X̃(t)) = X̃(t). It comes out as:

X̃(t) =
1

1 + γ
X(t). (2)

The increase in period life expectancy is given by dX̃(t)
dt

= γ
1+γ

. A value of γ
1+γ

= 1/4 thus

implies γ = 1/3, while γ
1+γ

= 1/5 corresponds to γ = 1/4. For the following numerical

examples I will use the latter value which is about the mid-point of the estimates reported

in Lee (2003).6

5Their data refer to the “mean age at death under current mortality conditions”, i.e. to period life
expectancy. Equation (1), however, refers to the development of cohort life expectancy. I will show later
that the estimated slope in Oeppen & Vaupel (2002) implies a value of γ = 1/3.

6In the demographic literature there exist a number of papers that have studied the relation between
different life expectancy concepts in standard mortality models. Goldstein (2006) and Missov & Lenart
(2011) show, e.g., that under special assumptions (like a “linear shift model” or a Gompertz mortality
model with constant yearly improvements at all ages) period and cohort life expectancy increase in a
linear fashion. The formulation in (1) can thus also be understood as a short-cut for a fully-fledged model
with mortality rates.
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2.2 Budget of the pension system

The total size of the active population L(t), of the retired populationR(t) and the resulting

dependency ratio z(t) are given by:

L(t) =

∫ B̃(t)

0

N(t− a) da, (3)

R(t) =

∫ X̃(t)

B̃(t)

N(t− a) da, (4)

z(t) =
R(t)

L(t)
. (5)

The income I(t) and the total expenditures E(t) of the pension system in a certain period

t are:

I(t) =

∫ B̃(t)

0

τ(t)W (t)N(t− a) da, (6)

E(t) =

∫ X̃(t)

B̃(t)

P (t− a, t)N(t− a) da. (7)

The total deficit (or surplus) is denoted by:

D(t) = E(t)− I(t), (8)

while the deficit ratio dt—defined as the size of total expenditures E(t) in relation to the

income of the pension system I(t)—is written as:7

d(t) =
E(t)

I(t)
. (9)

There are various ways to specify the notion of a “balanced budget” in this framework.

On the one hand one can talk about a budget that is balanced in every period:

D(t) = 0,∀t. (10)

7Alternatively, one could also use the deficit relative to “national income” (i.e. D(t)
W (t)L(t) ) or simply the

deficit-income ratio (D(t)
I(t) = d(t)− 1). In general, it does not matter which concept is used since they all

lead to qualitatively similar patterns.
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It follows immediately that the fulfillment of (10) implies that dt = 1,∀t. The second def-

inition of a budgetary balance refers to the intertemporal budget constraint and requires

that the budget is balanced over time (in present value terms):

PV D(t) =

∫ ∞
0

D(s)e−
∫ s
t ξ(x) dx ds = 0, (11)

where ξ(t) is the discount factor that is used to calculate the present value. There exists a

long discussion on what is the correct intergenerational discount factor. In the following I

will mostly refer to the case where ξ(t) = g(t), i.e. where the actual growth rate of wages

is used as the discount factor. This assumptions allows a clearer perspective on the un-

derlying mechanics of different pension systems without being distracted by assumptions

about the relative magnitudes of the discount rate, the growth rate or some relevant inter-

est rate. In particular, in this case the long-term solidity of the budget does not depend

on the temporal sequence of deficits and surpluses (cf. Settergren & Mikula 2006).

2.3 Demographic Steady State

For the following analysis it is helpful to use a steady state (or rather a “balanced growth

path”) as a reference point. It is a “triple stationary state” that involves the demography,

the economy and the pension system. First, the demographic situation is assumed to

be constant over time, i.e. N(t) = N and X(t) = X. Second, the economy grows at a

constant rate (g(t) = g). Third, also the main parameters of the pension system do not

change and the retirement age, the contribution rate and the average pension level are

constant, i.e.: B(t) = B, τ(t) = τ and q(t) = P (t)
W (t)

=
∫X
B
P (t−a,t) da.
W (t)

= q. From (3) and (4) it

then follows that also z(t) = R(t)
L(t)

= X−B
B
≡ z is constant over time, where z is the steady

state dependency ratio and also the ratio of the average years a person stays in pension

to the average years he or she is in work. A permanently balanced budget then requires

that in the steady state the following relation must hold:

τ̄ = q̄z̄. (12)

Each society may choose its favorite values for the steady state contribution rate, pension

level and retirement age, as long as condition (12) is fulfilled and as long as τ < 1.

Otherwise the pension system would be unsolid from the beginning. The specific choice

for τ , q and z will depend on social and political preferences, historic circumstances etc.
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3 A Notional Defined Contribution Pension System

3.1 Main features

Thus far I have left open how the pension levels P (t− a, t) of the various retired cohorts

at a certain period t are determined. It is in this area that one observes the biggest cross-

national differences and also the main rift between defined benefit and defined contribution

systems. There are various ways to design a system that is sustainable. An immediate

way, for example, would be to stipulate an identical pension payment for the entire retired

population and to adjust the pension level in reaction to changes in the dependency ratio,

i.e.: q(t − a, t) = q(t) = q z
z(t)

for a ∈ [B̃(t), X̃(t)]. This is similar to the sustainability

factor introduced in Germany in 2004 (Börsch-Supan & Wilke 2003, Knell 2010). The

drawback of such a formulation, however, is that the identical pension levels for all retired

workers do not take the individual retirement ages into consideration and might thus lead

to problems with inter- and intragenerational fairness. It is also a rather intransparent

mechanism that mixes changes in the average retirement age and in the development of

cohort sizes (that both influence changes in the dependency ratio).

There exists, however, one alternative type of PAYG systems that is often viewed to

be a superior approach since it is transparent, easily understandable and able to deal

with intra- and intergenerational differences in a straightforward, incentive compatible

and equitable manner: the notional defined contribution (NDC) system. This system

has been implemented first in Sweden and has later been also adapted by a number of

additional countries like Italy, Poland, Latvia, Mongolia, Turkmenistan etc. It is now

also often used as a benchmark PAYG model by international institutions like the World

Bank (Holzmann & Hinz 2005), the OECD (2011) or the European commission (EPC,

2009) and I therefore focus on this system.

The basic design of the Swedish notional defined contribution (NDC) system can be

described as follows.8 Each insured person pays 18.5% of its earnings (up to a ceiling)

as contributions from which 16% are credited to the (PAYG financed) notional account

while 2.5% are used for the built up of a funded pillar.9 The value of the “deposits” on the

PAYG account grow with the “notional interest rate” which in Sweden is defined as the

average growth rate of wages. At the time of retirement the notional capital is transformed

into an annuity. In the simplest version this annuization is done by dividing the capital

8Detailed descriptions can be found in Palmer (2000), Disney (1999) Williamson & Williams (2003)
and Holzmann & Palmer (2006).

9Details of this funded pillar can be found in Sundén (2004).
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by the (expected) remaining life expectancy. Each increase in life expectancy will thus

automatically lead to a decrease in the pension level. In Sweden, however, a different

approach for the annuitization is used (called the “G-factor”) where a real growth rate of

1.6% is used to “frontload” part of the expected pension adjustments thereby increasing

the initial pension. Existing pensions are then only adjusted with the difference between

the actual growth rate and this stipulated growth rate of 1.6%.

3.2 Formal expression of a NDC system

The Swedish model can be formalized in the following way. The first crucial feature of

every NDC system is that the contribution rate is fixed at τ(t) = τ for all periods. The

determination of the pension payments depends on the notional capital K(t, t + a) that

generation t accumulates over the working periods a ∈ [0, B(t)]. The final amount of this

notional capital (before it is turned into a continuous pension stream) is given by:

K(t, t+B(t)) =

∫ B(t)

0

τW (t+ a)e
∫ t+B(t)
t+a ρ(s) ds da, (13)

where ρ(s) stands for the notional interest rate in period s and the cumulative factor

e
∫ t+B(t)
t+a ρ(s) ds indicates how the contribution τW (t+a) that is paid into the pension system

in period t + a is revalued when calculating the final amount of the notional capital in

period t+B(t) (the period of retirement). The specification of the notional interest rate is

one of the crucial parameters in a NDC system and I will later discuss various possibilities

how it can (and should) be defined.

The first pension that is received by generation t in period t+B(t) is given by:

P (t, t+B(t)) =
K(t, t+B(t))

Γ(t, t+B(t))
, (14)

where the notional capital for generation t is transformed into an annuity by using the

remaining life expectancy Γ(t, t + B(t)) of generation t at the moment of retirement

t+B(t).10 The conceptual measure that is used to calculate the remaining life expectancy

(period vs. cohort life expectancy) is another crucial factor for the specification of a NDC

system. I will come back to this issue below.

10In order to keep the analysis simple I abstract here from front-loading (the “G-factor”) as described
above.

9



Existing pensions are adjusted according to:

P (t, t+ a) = P (t, t+B(t))e
∫ t+a
t+B(t)ϑ(s) ds, (15)

for a ∈ [B(t), X(t)] and where ϑ(s) stands for the adjustment rate in period s and the

cumulative adjustment factor e
∫ t+a
t+B(t)ϑ(s) ds indicates how the first pension P (t, t + B(t))

received by generation t in period t + B(t) is adjusted to give the pension payment in

period t+ a.

Inserting equations (13), (14) and (15) into (7) and assuming ϑ(t) = ρ(t) leads to the

following expression of expenditures (see appendix A):

E(t) = τW (t)

∫ X̃(t)

B̃(t)

∫ B(t−a)
0

[
e
∫ t
t−a+b(ρ(s)−g(s)) ds

]
db

Γ(t− a, t− a+B(t− a))
N(t− a) da. (16)

The question is, whether one can find definitions for ρ(t) and Γ(t, t+B(t)) such that (16)

develops in line with the income of the pension system given by (6), i.e. I(t) = τW (t)L(t).

3.3 Crucial choices in NDC systems

The crucial factors that have to be defined at the outset for a functioning NDC system

are thus the notional interest rate ρ(t), the adjustment factor ϑ(t) and the measure of life

expectancy that is used to specify the remaining life expectancy Γ(t, t+B(t)).

To start with the latter there exist two variants. One can either use period (or cross-

section) life expectancy X̃(t + B(t)) or cohort (or forecasted) life expectancy X(t) to

calculate the annuity payment for generation t. This means either:

Γ(t, t+B(t)) = X̃(t+B(t))−B(t) (17a)

or

Γ(t, t+B(t)) = X(t)−B(t). (17b)

In as far as the notional interest rate is concerned there are two possible methods of

indexation that are often discussed in the literature and that are used in real-world pension

systems: an indexation with the growth rate of average wages and one with the growth

rate of the wage bill (or rather the growth rate of the sum of contributions). I will only

discuss methods where the notional interest rate and the adjustment rate are identical,
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i.e. where ϑ(t) = ρ(t). The formulas are given by:

ρ(t) = gW (t) (18a)

or

ρ(t) = gW (t) + gL(t), (18b)

where gW (t) ≡ Ẇ (t)
W (t)

, gL(t) ≡ L̇(t)
L(t)

, Ẇ (t) ≡ dW (t)
dt

and L̇(t) ≡ dL(t)
dt

. Using the definitions

for W (t) = W (0)e
∫ t
0 g(s) ds, N(t) = N(0)e

∫ t
0n(s) ds and L(t) =

∫ B̃(t)

0
N(t − a) da one can

calculate (see appendix A) that:

gW (t) = g(t), (19)

gL(t) =
N(t− B̃(t))

L(t)

dB̃(t)

dt
+

∫ B̃(t)

0
N(t− a)n(t− a) da

L(t)
. (20)

The benchmark case is the situation where cohort sizes are constant (i.e. N(t) = N, ∀t)
and life expectancy increases in a linear fashion according to (1). One can now ask

how the retirement age has to change over time such that the dependency ratio z(t)

remains constant at the reference value z. The solution can be derived from setting

z(t) = X̃(t)−B̃(t)

B̃(t)
= z and solving for B̃(t). It comes out as:

B̃(t) =
X̃(t)

1 + z
=

X(t)

(1 + γ)(1 + z)
, (21)

where the latter equality follows from (2). Therefore dB̃(t)
dt

= γ
(1+γ)(1+z)

and thus gL(t) =
N

NB̃(t)

γ
(1+γ)(1+z)

= γ
X(t)

= γ

(1+γ)X̃(t)
. This result delivers an important insight. If life ex-

pectancy increases and if every cohort prolongs its working life in such a manner as to

counter this increase and to keep the dependency ratio constant then there will be a

continuous increase in the size of the labor force even if the size of the cohorts remains

constant. This is simply a consequence of the fact that each cohorts postpones its retire-

ment by a little bit, as specified in (21). In fact, this behavior seems like the “natural”

and most appropriate reaction to the increase in life expectancy. Taking this into con-

sideration it also appears unjustified that this “necessary” and “appropriate” increase

in the labor force should lead to a higher notional interest rate as would be the case if

one uses the growth rate of the wage bill (cf. (18b)) as the relevant concept. It seems

more reasonable to propose a new concept that defines the notional interest rate as the

growth rate of the wage bill adjusted for the necessary increase in retirement age due to
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increasing life expectancy. This leads to the third concept for the determination of the

notional interest rate and the adjustment factor that I will study in the following:

ρ(t) = gW (t) + gL(t)− γ

(1 + γ)X̃(t)
. (18c)

4 A self-stabilizing NDC system

Looking at the expression for total pension expenditures E(t) in (16) it does not seem

obvious whether it is at all possible to find parameters for the notional interest rate

and remaining life expectancy such as to implement a NDC system that has a budget

that is balanced (at least over the long run). The main challenge is to guarantee financial

sustainability for a large (or even an arbitrary) pattern of retirement ages. In the following

I am therefore abstaining from endogenizing the retirement age (e.g. by assuming optimal

intertemporal behavior) and I will focus on a NDC design that leads to a stabilizing budget

for various patterns of retirement choices.

In order to focus clearly on the issue of increasing life expectancy I will primarily deal

with the situation where cohort sizes are constant:

N(t) = N. (22)

The following proposition specifies how to design a NDC system such that it is compatible

with long-run sustainability for a wide variety of retirement behavior.

Proposition 1 For linearly increasing life expectancy and constant cohort sizes a no-

tional defined contribution system leads to a balanced budget if the following two condi-

tions are fulfilled: (i) The notional interest rate and the adjustment factor are equal to

the adjusted growth rate of the wage bill as given in (18c) and (ii) the remaining life

expectancy is calculated by using period life expectancy as in (17a).

The use of (18c) and (17a) leads to a situation where the budget is exactly balanced in

every period, almost balanced or balanced over the long-run—depending on the assump-

tion about the retirement behavior. Proposition 1 is surprising since it contradicts claims

about the most reasonable set-up of a NDC system that can be found in the related liter-

ature.11 There it is stated that the most appropriate design would involve a combination

11Various examples for this will be quoted in section 4.4.
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Table 1: The deficit-ratio for a linearly increasing retirement age

(1) (2) (3)
Notional Interest Rate — Growth Rate of:

Average Wages Wage Bill Adjusted Wage Bill

Period Life Expectancy 1 ≈ 1 + γ
2

1

Cohort Life Expectancy 1
1+γ

≈ 1− γ
2

1
1+γ

Note: The table shows the period deficit ratio d(t) = E(t)
I(t) for various assumption about

the notional interest rate and the measure of remaining life expectancy. Period [cohort]
life expectancy is defined as in (17a) [(17b)]. The notional interest rate is given by one of
the expressions in (18a), (18b) and (18c), respectively. Furthermore, it is assumed that

retirement age increases in a linear fashion according to B(t) = X(t)
1+z(1+γ) .

of cohort life expectancy (cf. (17b)) and the unadjusted growth rate of the wage bill (cf.

(18b)).

The proof of proposition 1 is given in the following subsections where I focus on three

different assumptions about the development of retirement age. Tables 1 and 2 summarize

various cases that are discussed in the following sections 4.1 and 4.2, respectively.

4.1 Retirement age increases linearly

As a starting point I look at the case where every generation chooses a retirement age

such as to stabilize the dependency ration at z(t) = z. From (21) and the fact that

B̃(t−B(t)) = B(t) this implies that:

B(t) =
X(t)

1 + z(1 + γ)
. (23a)

As said above, this seems to be a “natural” and intergenerational equitable reaction to

the continuous increase in life expectancy where the proportion of retirement years to

working years stays constant at X(t)−B(t)
B(t)

= z(1 + γ).

As previously mentioned, in this case gL(t) = γ

(1+γ)X̃(t)
and thus the notional interest

rate (18c) is given by ρ(t) = g(t) which is the same as using average wage growth (cf.

(18a)). In appendix A I show that if one uses this notional interest rate together with

(17a) then the budget of the pension system is always balanced, i.e. D(t) = 0 and d(t) = 1

13



Table 2: The deficit-ratio for a constant retirement age

(1) (2) (3)
Notional Interest Rate — Growth Rate of:

Average Wages Wage Bill Adjusted Wage Bill

Period Life Expectancy ≈ 1 + γ
2

≈ 1 + γ
2

≈ 1

Cohort Life Expectancy ≈ 1− γ
2

≈ 1− γ
2

≈ 1− γ

Note: The table shows the period deficit ratio d(t) = E(t)
I(t) for various assumption about

the notional interest rate and the measure of remaining life expectancy. Period [cohort]
life expectancy is defined as in (17a) [(17b)]. The notional interest rate is given by one of
the expressions in (18a), (18b) and (18c), respectively. Furthermore, it is assumed that
retirement age is constant at B(t) = B.

for every period.

For the stability of the system it is crucial that one uses the adjusted growth rate of the

wage bill (18c) and not the unadjusted wage bill growth rate (18b) as is often suggested in

the literature. For γ > 0 the latter concept would prescribe a higher notional interest rate

(ρ(t) = g(t) + γ

(1+γ)X̃(t)
) which would cause a permanent deficit of the pension system. In

particular, in appendix A I show that the deficit ratio in this case is approximately equal

to d(t) = 1 + γ
2
. This is a non-trivial amount. For a realistic value of γ it would amount

to a permanent deficit ratio of about 12.5%. The reason for this imbalance is that such

a system would grant an extra rate of return due to the permanent increase in the labor

force which is, however, just a necessary reaction to the increases in life expectancy and

should be neglected when determining the rate of return.

On the other hand, if one uses adjusted wage bill growth (18c) but cohort life ex-

pectancy (17b) instead of period life expectancy (17a) then the deficit ratio is given by

d(t) = 1
1+γ

and the pension system runs a permanent surplus. The use of cohort life

expectancy (as frequently recommended for NDC systems) is thus “overambitious” as it

will lead to excessively small annuities that cause a permanent surplus in the budget. It

is sufficient to use period life expectancy if this is combined with the appropriate notional

interest rate (18c).12

12Since the use of (17b) instead of (17a) leads to a permanent surplus while the use of (18b) instead
of (18c) to a permanent deficit one might want to know what happens if one were to combine (17b) and
(18b). The answer is that in this case the deficit ratio is approximately 1− γ

2 (see appendix A) and one
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4.2 Retirement age stays constant

It is certainly an optimistic scenario to assume that retirement age always adjusts in

lockstep to the increases in life expectancy. As the opposite (very “pessimistic”) extreme

one could also assume that the retirement is constant despite the advances in longevity:

B(t) = B. (23b)

Note that then the labor force is constant (gL(t) = 0) and thus the notional interest rate

(18c) is given by ρ(t) = g(t)− γ

(1+γ)X̃(t)
.

As shown in appendix A, the combination of a notional interest rate set according to

(18c) and a remaining life expectancy that is based on period life expectancy as in (17a)

leads to a deficit ratio given by:

d(t) =
B

X̃(t)

(
(2 + γ) ln(1 + γ)

2γ
− 1

)
+ 1 ≈ 1,

where the approximation is around γ = 0. So in this case the combination of (18c) and

(17a) leads to a budget that is almost balanced in every period. This can also be seen by

looking at the non-approximated version and by setting γ = 1/4, B = 45 and X(0) = 60

(such that z(0) = 1/3). For t = 0 one gets that d(0) = 1.00389 (the expenditures exceed

income by only 0.4%) while limt→∞ d(t) = 1.

It is interesting to study here what would happen if one uses a “conventional” notional

interest rate with the growth rates of either average wages (18a) or the wage bill (18b).

These two cases are now identical (since gL(t) = 0) implying a notional interest rate of

ρ(t) = g(t). Using period life expectancy one can calculate that:

d(t) =
(1 + γ) ln(1 + γ)

γ
≈ 1 +

γ

2
.

This seems to confirm the belief that the use of period life expectancy is not enough to

keep a NDC system in balance. The use of cohort life expectancy (17b), however, as is

often suggested as the better alternative is also not appropriate as it leads to a permanent

surplus.

d(t) =
ln(1 + γ)

γ
≈ 1− γ

2
.

The punchline of this consideration is that in the case of constant retirement ages and

faces a permanent surplus.
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a notional interest rate ρ(t) = g(t) both methods of calculating the remaining life ex-

pectancy for annuitization at the time of retirement lead to an unbalanced budget. The

first method is too “generous” causing persistent deficits while the second method is too

“harsh” leading to ongoing surpluses. In fact, one could think about using a mixture of

both life expectancy concepts in order to stabilize the system:

Γ(t, t+B(t)) =
[
µX(t) + (1− µ)(X̃(t+B(t)))

]
−B(t), (17c)

where µ gives the relative weight of cohort life expectancy. One can calculate the weight

that leads to a permanently balanced budget with d(t) = 1,∀t. It comes out as:

µ∗ =
1

γ2
((1 + γ) ln(1 + γ)− γ) ≈ 1

2

(
1− γ

3

)
. (24)

A mixture of both life expectancy concepts will thus lead to a balanced NDC system

in the case where the retirement age does not react to increasing life expectancy. For

γ = 1/4, e.g., the optimal value is µ∗ = 0.46 that puts slightly more weight on period

life expectancy. I want to stress, however, that the same result (a continuously balanced

budget) can also be guaranteed if one uses the adjusted growth rate of the wage bill (18c)

and period life expectancy (17a). In fact, the latter option is preferable since it does work

for many different patterns of retirement behavior and not only for the special case where

B(t) = B.

In closing this section I want to stress that the calculations abstract from the existence

of a minimum pension. If social security legislation prevents a fall of the relative pension

level q(t) below some minimum level qmin then a fixed retirement age will lead to an

increasing deficit even in a NDC system.

4.3 Retirement age is random

The assumptions about the behavior of retirement age made so far are certainly rather

special. As a first step towards a more general behavioral pattern one can look at two

variants of the examples in sections 4.1 and 4.2. First, one can assume that B(t) =

λX(t) and 0 < λ < 1. In this case the combination of (18c) and (17a) also leads to a

permanently balanced budget as in section 4.1 (which is a special case with λ = 1
1+z

). On

the other hand, if retirement age is a linear combination between (23a) and (23b), i.e.

B(t) = ς X(t)
1+z(1+γ)

+ (1 − ς)B then one gets a similar result as in section 4.2. The budget

is almost balanced for all values of ς. These extensions, however, are only slightly more

16



general than the ones considered in the previous sections since they still assume that all

cohorts behave in the same systematic manner.

In a next step I have therefore used numerical simulations to study the consequences

of a completely arbitrary pattern of retirement age behavior.13 I only want to present the

results of one stylized case where I assume that retirement age is a uniformally random

variable between the values given in (23a) and (23b):

B(t) = Uniform

(
B,

X(t)

1 + z(1 + γ)

)
. (23c)

This is certainly an implausible and extreme scenario that is only chosen to illustrate

the self-stabilizing possibilities of a NDC system that uses adjusted wage bill growth and

period life expectancy as its crucial parameters. Figure 1 shows one path for B(t) under

assumption (23c) while Figure 2 reports the pattern of d(t) that emerges in this scenario.

As expected the pension system is unbalanced in almost every period and the deficit

ratio fluctuates with a minimum and maximum of 0.96 and 1.04, respectively, and a

standard deviation of 0.018. Over time, however, the surpluses and the deficits counteract

each other and the average deficit ratio over the 120 year period is 0.999.14 This outcome

is not due to the specific numerical example reported in figure 1 but it seems to be true

in general. For any of the many simulations I have run the average deficit ratio has been

very close to 1.

4.4 Comparison to the existing literature

The results challenge some of the “conventional wisdom” about the appropriate design of

NDC systems that can be found in the related academic and policy literature.

First, I have shown that if the retirement age is a choice variable then it is fairly simple

to achieve a permanently balanced budget in the presence of increasing life expectancy.

It is sufficient to determine the period-specific retirement age according to (21) (or the

cohort-specific retirement age according to (23a)) in order to stabilize the dependency

13Details about the simulations can be found in appendix B. In particular, the simulations are based
on a discrete-time version of the model and therefore the variables B(t), d(t) etc. should be understood
as Bt, dt etc. I do not make these notational substitutions here in order to keep the formulas and figures
in line with the rest of the text.

14This has been calculated under the assumption that the discount factor ξ(t) is equal to the growth
rate g(t). For alternative assumptions the long-run balance will depend on the size of the discount (or
interest) rate and on the exact sequence of surpluses and deficits. In general, however, the deficit will not
be huge and it will have a tendency to balance over time.
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Figure 1: The figure shows a random path of the cohort-specific retirement age when B(t) is a unifor-
mally distributed variable between B and B(t) = X(t)/(1 + z(1 + γ)). The simulation has been run on a
quarterly basis and was transformed into annual values. To smooth out short-run fluctuations the graph
shows a 5-year moving average. The parameters were chosen as follows: τ = 1/4, z = 1/3, γ = 1/4,
X(0) = 60 and B = X(0)/(1 + z(1 + γ)) = 42.4.

20 40 60 80 100 120
t

0.96

0.98

1.00

1.02

1.04

dHtL

Figure 2: The figure report the development of d(t) when the cohort-specific retirement age is given by
the pattern shown in figure 1. The simulation has been run on a quarterly basis and was transformed
into annual values. To smooth out short-run fluctuations the graph shows a 5-year moving average. The
parameters were chosen as follows: τ = 1/4, z = 1/3, γ = 1/4, X(0) = 60 and B = 42.4.
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ratio at z(t) = z and the budget at D(t) = 0. This stands in contrast to the findings

of Andersen (2008): “An indexation of pension ages to longevity may seem a simple and

fair solution. This would imply that the relative amount of time spent as contributor to

and beneficiary of a social security scheme would be the same across generations with

different longevity. [. . .] However, as is shown in this paper, this solution is not in the

feasibility set.” (p. 634f.). The difference between the results in Andersen (2008) and in

this paper stems from the use of different definitions of “proportionality” which might

itself be the consequence of different modeling frameworks. While I work in a continuous

time framework, Torben Andersen uses a “two life phases” model where the first life phase

(“youth”) has a given length normalized to unity while the second phase has length β

(≤ 1). The labor period in the second life phase is, however, flexible and individuals can

choose to retire at an age α ≤ β. The retirement period is thus (β−α) and the dependency

ratio in time t is given by zt = βt−αt
1+αt

. Andersen defines the relative retirement age in period

t as αt
βt

. He concludes that “when the retirement age relative to longevity (α
β
) is constant,

we have that the economic dependency ratio is increasing in longevity, and this explains

why the simple indexation solution is not economically feasible.” (ibd., p. 639). This

follows from the fact that ∂zt
∂βt

∣∣∣
αt
βt

=const.
> 0. This, however, is only true for the rather

unconventional definition of the relative retirement age as αt
βt

where αt is not the total

length of working time but rather only the years of work since the “middle age”. In order

to make the total number of working years (1 +αt) proportional to the complete life span

(1 + βt) would require to set αt = λ(1 + βt) − 1 for some constant λ. This then leads

to a constant dependency ratio of zt = 1−λ
λ

. This is the same result as in my model and

confirms—contrary to Andersen’s claim—that the social security system can be stabilized

if the retirement age is indexed to life expectancy.

For the (more realistic) case where the actual retirement age is not completely under

control of the policymaker, I have furthermore shown that a NDC system that uses ad-

justed wage bill growth (18c) and period life expectancy (17a) will stabilize the budget in

the long run. This result also differs from the widely held beliefs about the functioning

of NDC systems. Broadly speaking, the general opinion holds that the best NDC design

involves the use of the growth rate of the (unadjusted) wage bill as the notional interest

rate and of cohort life expectancy as the measure to calculate remaining life expectancy.

The following quotations illustrate this dominant view.15

15I want to stress, however, that most of the following quotes are taken from papers that are more
“policy-oriented” and less “model-based”. The claims are often made in the context of a general assess-
ment of the workings and the appropriate design of NDC systems. The results of my model are thus
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For example, Palmer (2000) argues: “Wage sum indexation always moves the system

in the direction of financial stability. Per capita wage growth reflects the growth in

productivity, but not changes in the size of the labor force. For this reason, per-capita

wage indexation does not yield financial stability if wage growth is greater than the

growth of the contribution wage sum” (ibd., p. 18). Concerning life expectancy one

can read: “Swedish politicians have made another decision that runs counter to long-

term stability. If the system were 100 percent consistent with its underlying principles,

it would be necessary to successively recalculate the pensions of all pensioners as life

expectancy increases, or to attempt to perform a sound actuarial forecast. [. . .] Instead,

the life expectancy calculation will be based on an average of observed outcomes prior to

retirement. The factor will be biased towards to produce benefit levels that are persistently

too high, thus creating an additional source of financial stress” (ibd., p. 28).

Similarly, Börsch-Supan (2003), writes that: “Viewed from a macroeconomic perspec-

tive, the ‘natural’ rate of return for an NDC system is the implicit return of a PAYG

system: that is, the growth rate of the contribution bill. [. . .] Using up-to-date cohort-

specific life tables guarantees actuarial sustainability”(ibd., p. 38f.).

Finally, Holzmann (2006) includes among the “crucial elements for design and im-

plementation” of NDC systems: “The choice of a notional interest rate consistent with

internal rate of return of a PAYG scheme: that is, growth rate of aggregate (covered) wage

sum. [. . .] The choice of remaining life expectancy. Politically determined underestima-

tion (for example, by taking the cross-section life expectancies instead of estimated cohort

life expectancies) to deliver higher annuities will also jeopardize financial sustainability”

(ibd., p. 244).

A smaller part of the literature is more in line with my findings. As far as life ex-

pectancy is concerned, N. Barr and P. Diamond write, e.g.: “A process of automatic

adjustment that relies heavily on projected mortality rates could easily become politi-

cized. Thus a system may function better if it adjusts benefits on the basis of realized

mortality information” (Barr & Diamond 2009, p. 89).

Closely related to my approach is the analysis and the results in Settergren & Mikula

(2006) that are also summarized in Palmer (2006). These authors note that the use of the

wage bill as the notional interest rate is “not sufficient to maintain financial equilibrium

under various circumstances. [. . .] Different distributions of contribution and benefit pay-

ment flows will affect the NDC scheme’s ability to maintain temporal balance between

better understood as a refinement than as a criticism of this complementary literature.
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assets and liabilities. In insurance terms, the time money remains in the system before it

has to be paid out affects the instantaneous liquidity of the system” (Palmer 2006, p. 24).

This “time money remains in the system” is termed the “turnover duration”. Changes

in the turnover duration have to be reflected in the notional interest rate in order to

maintain the financial stability of the system. Increasing life expectancy is one important

factor why the turnover duration is likely to change over time. In fact, it can be shown

(see appendix A.5) that for the case where the retirement age increases in a linear fashion

according to equation (23a) the growth rate of the turnover duration is exactly given by
γ

X(t)
. Correcting for this development will then lead to the same expression as in (18c).

The framework with turnover durations can thus be regarded as an alternative way to

look at the issue of a self-stabilizing NDC system with increasing life expectancy.

5 Results when life expectancy has an upper limit

So far I have assumed that life expectancy is increasing in a linear fashion. As argued

above, this assumption is in line with the historic development over the last century.

Nevertheless, this is a controversial assumption and there exists a heated debate among

demographers on his issue. On the one hand there is group of researchers arguing that

there exists a maximum human life span that cannot be extended. James Fries, e.g., has

argued in the 1980ies that humans are born with a maximum potential life expectancy

that he predicted to be normally distributed among the population with a mean of 85

and a standard deviation of 7 years. Carnes et al. (2003) have further strengthened this

point and they argued that “the biological evidence suggests that organisms operate under

warranty periods that limit the duration of life of individuals and the life expectancy of

populations” (ibd., p. 31). They conclude that: “Although it is likely that anticipated

advances in biomedical technology and lifestyle modification will permit life expectancy

to continue its slow rise over the short-term, a repetition of the large and rapid gains in

life expectancy observed during the 20th century is extremely unlikely” (ibd. p. 43).

On the other hand, however, Oeppen & Vaupel (2002) have strongly argued against

the proponents of the view that there exists a fixed life-span that we are already approach-

ing. Their reasons are: “First, experts have repeatedly asserted that life expectancy is

approaching a ceiling: these experts have repeatedly been proven wrong. Second, the ap-

parent leveling off of life expectancy in various countries is an artifact of laggards catching

up and leaders falling behind. Third, if life expectancy were close to a maximum, then
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the increase in the record expectation of life should be slowing. It is not. For 160 years,

best-performance life expectancy has steadily increased by a quarter of a year per year, an

extraordinary constancy of human achievement” (ibd., p. 1031). In a similar vein, Robert

Fogel has argued that the technophysio evolution (i.e. the co-evolution of technological

and physiological improvements) give humans an increasing control over future medical

progress and further reduction in mortality rates (cf. Fogel & Costa 1997). So even if

everybody agrees that there exists some limit to life expectancy short of immortality,

this limit is so uncertain that the assumption of a pattern like (1) is quite reasonable in

order to study developments and appropriate policy reactions in the foreseeable future.

This also seems to be the position of Oeppen & Vaupel (2002) who conclude: “Because

best-practice life expectancy has increased by 2.5 years per decade for a century and a

half, one reasonable scenario would be that this trend will continue in coming decades. If

so, record life expectancy will reach 100 in about six decades” (ibd., p. 1030).

Nevertheless, it is interesting to see how a NDC system that uses a combination of

period life expectancy (17a) and an adjusted wage bill growth (18c) will react if life

expectancy hits an upper limit. In particular, I assume now that:

X(t) = X(0) + γ · t, for t < t̂ (25)

X(t) = X(t̂) = Xmax, for t ≥ t̂.

This is an unrealistic assumption that is only made to fix ideas. It would certainly be more

plausible to assume a constant slow-down of the trend increase before the upper limit is

reached. In order to study the impact of this alternative life expectancy development one

has to first consider what it implies for the pattern of period life expectancy. For t < t̂

it still holds (cf. (1)) that X̃(t) = X(t)
1+γ

. For t̂ ≤ t < t̂ + Xmax period life expectancy

continues to grow at speed γ
1+γ

, i.e. X̃(t) = X̃(t̂) + γ
1+γ

(t− t̂). Finally, for t ≥ t̂ + Xmax

one has that period life expectancy is constant at X̃(t) = Xmax.

The budgetary development of the pension system clearly depends on the way how

people deal with this slow-down in life expectancy improvements. I simulate the impact

of such a situation for the case where the maximum age is reached in period t̂ = 0 and

where Xmax = 70. This is illustrated in Figure 3 for three assumptions about the reaction

of retirement behavior. There are two important messages from this picture. First, the

combination of (18c) and (17a) can lead to a budget that stabilizes over time. Second,

whether this automatic stabilization takes place (and also the exact pattern of deficits

and surpluses) depends, however, crucially on the retirement behavior before and after the
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Figure 3: The figure report the development of d(t) when cohort life expectancy has grown linearly
with γ = 1/4 up to generation t̂ = 0 and from then on has reached a maximum with X(0) = Xmax = 70.
The rest of the parameters is as in figure 2. The simulation is based on quarters and was transformed
into annual values and smoothed by a 15-year moving average.

transition. In particular, it is important to consider whether the drop in γ is an expected

event or whether it comes as a surprise.

Let’s start with the case where every generation is assumed to know its exact hour

of death in advance and so generation t̂ and every succeeding generation sees the break

in life expectancy coming. As a benchmark assumption about retirement one can now

look at the case where all cohorts follow the rule given by (23a) and therefore choose

B(t) = X(t)
1+z(1+γ)

. Up to the period where cohort t̂ has to decide about its retirement age

nothing changes vis-à-vis the benchmark case and one will observe a balanced budget

with d(t) = 1. For the parameters of the model this happens in period t̂+B(t̂) = 49.4.16

Cohort t̂ + dt sees that it will not get older than Xmax and so it stops prolonging the

working period and it will retire at the age of 49.4 as all other succeeding generations will

do as well. This, however, has two consequences. First, the notional interest rate will turn

negative (assuming g = 0) since X̃(t) is still increasing until t = t̂+Xmax = 70. Second,

16The small wiggles around d(t) = 1 in figure 3 before t = 49.4 are due to the fact that I use a simulation
in discrete time while the results in section 4 are based on a continuous-time framework. See appendix
B.
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this increase in the notional interest rate is not enough to counterbalance the financial

effects of the advanced retirement of cohort t̂ that has the double impact of decreasing the

number of contributors and increasing the number of beneficiaries. This “extra burden”

increases with every additional cohort that retires at an age of B(t) = 49.4 while period

life expectancy is still increasing. This only changes in period t = 70 when both cohort

and period life expectancy are constant and from when on the notional interest rate is

again zero. The deficit, however, stays negative for a number of periods. The reason for

this is that in the old equilibrium the pension level has been given by: qold(t) = q while

in the new steady state it reduces to qnew(t) = q
1+γ

. For the parameters of the simulation

this means a drop from 0.75 to 0.6. The pension calculation of the first generations that

retired at the age of 49.4 has, however, still implemented a pension level of 0.75. On the

other hand, however, there are also a number of generations (i.e. the ones that had worked

during the periods between 49.4 and 70) that had to accept lower-than-normal notional

interest rates which has depressed their pension claims even below the new steady state

values. This reduces the total pension expenditures for some time and between the periods

77 and 140 they even decline below the income of the system thus resulting in a financial

surplus. Only if there is no cohort left in the pension system that has experienced a single

one of those periods with a reduced notional interest rate the system will again settle

down on the new steady state values with a permanently balanced budget (d(t) = 1).

The mean deficit ratio across all the adjustment periods is, however, equal to 1 (with a

standard deviation of 0.02). The system will thus again be able to stabilize itself and

guarantee a budget that is balanced in the long-run. The complete stabilization will,

however, take a rather long time (around 140 years).

The picture is very different if one looks at the case where the end in the increases

in life expectancy comes completely unexpected. This is also not an entirely plausible

assumption but probably a more realistic case than the situation where the structural

break is perfectly foreseen. Until the stop in life expectancy people will again set their

retirement age according to (23a) which is (written in terms of X̃(t)): B(t) = (1+γ)X̃(t)
1+z(1+γ)

.

Then all in the sudden in period t = t̂+Xmax = 70 period life expectancy does not increase

anymore and settles at X̃(t̂+Xmax) = 70. The retirement age in this period is given by:

B̃(t̂+Xmax) = X̃(t̂+Xmax)
1+z

and from this one can calculate that the generation that retires

in this moment is generation t̂+Xmax− B̃(t̂+Xmax) = t̂+ z
1+z

Xmax. The cohort-specific

retirement ages are thus given by: B(t) = X̃(t)(1+γ)
1+z(1+γ)

for t < t̂+ z
1+z

Xmax, and B(t) = Xmax

1+z

for larger t. The notional interest rate, however, is always equal to zero in this case since

the actual retirement age increases in lockstep with the increase in period life expectancy.
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Therefore, all pension claims are the same both between and within cohorts and the

system runs a permanently balanced budget. In reality, the stopping in increases in life

expectancy will probably be a slow process and it will take some time to notice it. It will

then, however, be possible to make estimates about γ(t) and this will affect the retirement

behavior and the budgetary situation. All in all one can expect a rather smooth and self-

stabilizing adjustment also in the case of a break in the development of life expectancy as

long as retirement age was moving in line with life expectancy before the limit has been

reached.

The third case that is documented in figure 3 is the one where the retirement age stays

always constant. In this case one sees a different reaction of the system. The first thing to

note in this context is that due to the fixed retirement age the only variable that changes

at time t̂+Xmax is the notional interest rate. While before this period it has been given

by ρ(t) = − γ

(1+γ)X̃(t)
, afterwards it increases to ρ(t) = 0, which is the new equilibrium

rate. For a considerable number of periods, however, there are still cohorts in the system

that have pension claims that are based on periods where the lower, pre-shock notional

interest rate has been valid. This depresses aggregate expenditures and leads to a surplus

in the system between periods 70 and 140. In this situation there are no counterbalancing

periods of deficits and the occurrence of a maximum age has a permanent effect on the

balance of the PAYG pension system.17

6 Conclusion

In this paper I have studied how to design a NDC pension system that is able to stabilize

its budget in the presence of increasing life expectancy. I have shown that the financial

sustainability depends on the appropriate determination of two parameters: the notional

interest rate and the measure that is used to calculate remaining life expectancy. A

combination of the growth rate of an adjusted wage bill as notional interest rate and period

life expectancy will lead to a balanced budget for a large variety of possible retirement

behavior. These findings are a challenge to the conventional wisdom on the appropriate

design of NDC systems and none of the countries that are currently organized in such a

way uses the combination of parameters that suggests itself in the modeling framework

of this paper. These findings might thus be useful for the refinement of existing or the

17I have also studied an intermediate case between (1) and (25) where X(t) grows with speed γ1 for
t < t̂ and with speed γ2 for t ≥ t̂ and where γ2 < γ1. The results in this scenario are qualitatively
identical to the one illustrated in figure 3 (which is a special case with γ2 = 0).
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construction of future NDC systems.

The focus of this paper has been to analyze the impact of increasing life expectancy

on the stability of PAYG pension systems. Therefore, I have abstracted from all other

economic and demographic factors that might also be potential sources of instability for

the system. First and foremost this concerns changes along the second demographic

dimension: the size of the birth or working cohorts N(t). Different fertility scenarios

have already been studied in the related literature (cf. in particular Valdés-Prieto 2000).

The main finding is that non-monotonic shifts in the development of cohort size can

lead to short-run and/or long-run financial instability of the pension system. Irregular

developments of fertility are, however, only one reason why a NDC pension system might

not be capable of achieving a balanced budget, neither in the short nor in the long run.

There exists a large number of other factors that might change in an erratic fashion.

Examples for such events include sudden changes in the average fertility age, in the

average age of labor market entry, in the age-earnings profiles or in age-specific mortality.

It is an interesting area for future research to study and systematize the effects of these

changes and to analyze their interaction with increasing life expectancy.

Given that there are many sources for unpredictable shocks it seems inevitable that a

NDC system includes some additional mechanism that adjusts for unforeseen imbalances

like the Swedish “automatic balance mechanism” (Settergren 2001, Auerbach & Lee 2009).

Independent of the design of such an additional balance mechanism it is important to note,

however, that the appropriate definition of the notional interest rate and remaining life

expectancy will in any case lead to a more stable system and will make the activation of

the automatic balance mechanism a less frequent event.
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Appendices

A Derivations and proofs

A.1 Derivation of gW (t) and gL(t)

Note that
d
∫ x
0 f(ω) dω

dx
= f(x). Therefore:

dW (t)

dt
= W (0)e

∫ t
0 g(s) ds

d
∫ t
0
g(s) ds

dt
= W (t)g(t)

and so gW (t) = Ẇ (t)
W (t)

= g(t) as stated in (19).

d
∫ v(x)
u(x)

f(x, t) dt

dx
= f(x, v(x))v′(x)− f(x, u(x))u′(x) +

∫ v(x)

u(x)

f ′x(x, t) dt.

Therefore:

dL(t)

dt
= N(t− B̃(t))

dB̃(t)

dt
−N(t) · 0 +

∫ B̃(t)

0

dN(t− a)

dt
da.

Furthermore, if N(t) = N(0)e
∫ t
0n(s) ds then dN(t−a)

dt
= N(t − a)n(t − a) and thus gL(t) =

L̇(t)
L(t)

= N(t−B̃(t)
L(t)

dB̃(t)
dt

+
∫ B̃(t)
0 N(t−a)n(t−a) da

L(t)
.

A.2 Derivations for section 3.2

Using the expressions (13), (14) and (15) in (7) one can write the expenditures of the

NDC pension system as:

E(t) = τ

∫ X̃(t)

B̃(t)

∫ B(t−a)
0

[
W (t)e−

∫ t
t−a+bg(s) dse

∫ t−a+B(t−a)
t−a+b ρ(s) ds

]
db

Γ(t− a, t− a+B(t− a))
e
∫ t
t−a+B(t−a)ϑ(s) dsN(t−a) da,

where I have used the fact that W (t− a+ b) = W (t)e−
∫ t
t−a+bg(s) ds. For the case where

ϑ(t) = ρ(t) one can use the fact that:

e
∫ t−a+B(t−a)
t−a+b ρ(s) dse

∫ t
t−a+B(t−a)ρ(s) ds = e

∫ t
t−a+bρ(s) ds

to write E(t) in the form as shown in (16).
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A.3 Derivations for increasing retirement age (section 4.1)

It is assumed here that retirement age follows (23a).

A.3.1 Adjusted wage bill growth and period life expectancy

When the notional interest rate is set according to (18c) and one uses period life ex-

pectancy (17a) the following relation holds:∫ B(t−a)

0

e
∫ t
t−a+b(ρ(s)−g(s)) ds db = B(t− a) (26)

and expression (16) simplifies to:

E(t) = τW (t)N

∫ X̃(t)

B̃(t)

B(t− a)

X̃(t− a+B(t− a))−B(t− a)
da.

Using B(t) = X(t)
1+z(1+γ)

and X̃(t) = X(t)
1+γ

one can calculate that B(t−a)
X̃(t−a+B(t−a))−B(t−a)

= 1
z

and thus E(t) = τW (t)N X̃(t)−B̃(t)
z

= τW (t)NB̃(t). Given that the income of the pension

system is I(t) = τW (t)L(t) = τW (t)NB̃(t) it follows that D(t) = 0 for every period. The

NDC system is in this case permanently balanced.

A.3.2 Unadjusted wage bill growth and period life expectancy

Using (18b) and (17a) leads to the following relations (for (16)):∫ t

t−a+b
(ρ(s)− g(s)) ds =

∫ t

t−a+b

γ

X(s)
ds = ln

(
X(t)

X(t− a+ b)

)
,

∫ B(t−a)

0

e
∫ t
t−a+b(ρ(s)−g(s)) ds db =

X(t)

γ
ln

(
(1 + z)(1 + γ)

1 + z(1 + γ)

)
,

∫ X̃(t)

B̃(t)

X(t)
γ

ln
(

(1+z)(1+γ)
1+z(1+γ)

)
X̃(t− a+B(t− a))−B(t− a)

da =

B̃(t)
(1 + z)(1 + γ)(1 + z)

γ2ẑ
ln

(
(1 + z)(1 + γ)

1 + z(1 + γ)

)
ln

(
1 + z(1 + γ)

1 + z

)
.
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The deficit ratio is therefore given as:

d(t) =
(1 + z)(1 + γ)(1 + z)

γ2ẑ
ln

(
(1 + z)(1 + γ)

1 + z(1 + γ)

)
ln

(
1 + z(1 + γ)

1 + z

)
≈ 1 +

γ

2
,

where the approximation follows from a first-order Taylor expansion around γ = 0. The

use of unadjusted wage bill growth thus leads to a permanent deficit. This has also been

confirmed by numerical simulations without using the approximation.

A.3.3 Adjusted wage bill growth and cohort life expectancy

This combines (18c) and (17b). Similar steps as in A.3.1 lead to B(t−a)
X(t−a)−B(t−a) = 1

z(1+γ)

and thus d(t) = 1
1+γ

.

A.3.4 Unadjusted wage bill growth and cohort life expectancy

Combining (17b) and (18b) and using similar steps as in A.3.2 leads to:

d(t) =
(1 + z)(1 + z)

γ2ẑ
ln

(
(1 + z)(1 + γ)

1 + z(1 + γ)

)
ln

(
1 + z(1 + γ)

1 + z

)
≈ 1− γ

2
. (27)

In this case one faces a permanent surplus as has also been confirmed by numerical

simulations.

A.4 Derivations for constant retirement age (section 4.2)

For this case it is assumed that retirement age is constant as specified in equation (23b).

A.4.1 Adjusted wage bill growth and period life expectancy

When the notional interest rate is set according to (18c) and one uses period life ex-

pectancy (17a) the following relations hold:∫ t

t−a+b
(ρ(s)− g(s)) ds =

∫ t

t−a+b
− γ

X(s)
ds = ln

(
X(t− a+ b)

X(t)

)
,

∫ B

0

e
∫ t
t−a+b−

γ
X(s)

ds db =
B

X(t)

(
X(t− a) +

γ

2
B
)
,
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∫ X̃(t)

B

B
X(t)

(
X(t− a) + γ

2
B
)

X̃(t− a+B)−B
da =

B(1 + γ)

X(t)

∫ X̃(t)

B

X(t− a) + γ
2
B

X(t− a)−B
da

=
B(1 + γ)

X(t)

(
B

(
2 + γ

2γ
ln(1 + γ)

)
+
X(t)

1 + γ
−B

)
.

Since the income of the system is given by I(t) = τ̂W (t)NB̄ the deficit ratio boils down

to:

d(t) =
B(1 + γ)

X(t)

(
(2 + γ) ln(1 + γ)

2γ
− 1

)
+ 1, (28)

which, using a first-order Taylor expansion around γ = 0, is approximately 1.

A.4.2 Adjusted wage bill growth and cohort life expectancy

Combining (17b) and (18c) and using similar steps as before one gets that:

d(t) =
B

X(t)

(
(2 + γ) ln(1 + γ)

2γ
− 1

)
+

1

1 + γ
≈ 1− γ. (29)

A.4.3 Average wage growth or wage bill growth and period or cohort life

expectancy

For a notional interest rate according to (18c) or (18a) and the “hybrid” life expectancy

concept (17c) with Γ(t, t+B(t)) =
[
µX(t) + (1− µ)(X̃(t+B))

]
−B it holds that:

∫ t

t−a+b
0 ds = 0,

∫ B

0

e
∫ t
t−a+b0 ds db = B,

∫ X̃(t)

B

B

(µX(t− a) + (1− µ)(X̃(t− a+B)))−B
da =

∫ X̃(t)

B

B(1 + γ)

(1 + µγ)(X(t− a)−B)
da

=
B(1 + γ)

1 + µγ

ln(1 + γ)

γ
.

The deficits ratios for the cases with cohort and period life expectancy follow for µ = 1

and µ = 0, respectively. The “optimal” µ can be calculated by setting d(t) = 1 and

solving for µ. The resulting µ∗ is stated in equation (24).
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A.5 Derivations for the turnover duration (section 4.4)

The turnover duration is defined as the average time a unit of money is in the pension

system, i.e. the average time that passes between the incoming and the outgoing payment.

Settergren & Mikula (2006, p. 120) show that it can be written as: TD(t) = AR(t)−AC(t),

where AR(t) is the “money weighted average age of retiree” and AC(t) is the “money

weighted average age of contributor”. Expressed in formal terms one can thus write:

AC(t) =

∫ B̃(t)

0
aW (t)N(t− a) da∫ B̃(t)

0
W (t)N(t− a) da,

=

∫ B̃(t)

0
aN(t− a) da

L(t)
,

AR(t) =

∫ X̃(t)

B̃(t)
aP (t− a, t)N(t− a) da∫ X̃(t)

B̃(t)
P (t− a, t)N(t− a) da

.

For the case with N(t) = N one has that AC(t) = B̃(t)
2

. If the notional interest rate is

defined as ρ(t) = gW (t)+gL(t)−gTD(t), where gTD(t) ≡ ˙TD(t)
TD(t)

and ˙TD(t) ≡ dTD(t)
dt

then the

calculation of AR(t) is not straightforward. In order to calculate the stream of P (t− a, t)
one has to know gTD(t) while one has to know the various P (t−a, t) in order to calculate

TD(t) and thus gTD(t). For the case where retirement age is determined according to

(23a) one can, however, make a guess. In particular, let’s assume that gTD(t) = γ
X(t)

and

the notional interest rate is thus the same as given in (18c). It is then easy to show that

AR(t) = X̃(t)+B̃(t)
2

and therefore TD(t) = X̃(t)
2

. From this it follows that gTD(t) = γ
X(t)

thus confirming the conjecture. For other assumptions about the retirement age, however,

this procedure does not work and one would have to use simulations in order to study the

self-stabilizing properties of the framework based on turnover duration and to compare it

to the approach of this paper.
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B Simulations

In order to study the behavior of the NDC system for arbitrary patterns of retirement one

has to rely on numerical simulations. For this purpose one also has to use a discrete-time

version of the continuous-time set-up presented in section 3.2 of the paper. While allow-

ing for a wide range of assumption, this discrete-time framework has the disadvantage

that many of the precise results derived in the paper are only valid in an approximate

sense. The main problem is that the discrete-time version only allows for integer val-

ues of life expectancy and retirement age while the development of life expectancy and

the assumptions about parallel retirement adjustments involve non-integer values. The

following equations are used for the simulation:

Xt = Round (X0 + γ·t) ,

Lt =
X̃t∑
a=1

It−a+1,tNt−a+1,

where X̃t is the maximum age observed in period t and It,s is an indicator variable with

It,s = 1 if generation t works in period s and It,s = 0 otherwise.

Rt =
X̃t∑
a=1

(1− It−a+1,t)Nt−a+1,

zt =
Rt

Lt
,

It = τ
X̃t∑
a=1

It−a+1,tWtNt−a+1,

Et =
X̃t∑
a=1

(1− It−a+1,t)Pt−a+1,tNt−a+1,

Kt,t+Bt =
Bt∑
a=1

τWt+a−1Ψt+a−1,t+Bt ,

where Ψt+a−1,t+Bt is the cumulative notional interest rate factor given by:

Ψt+a−1,t+Bt =
t+Bt∏
s=t+a

(1 + ρs),
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for 1 ≤ a ≤ Bt and ρt is the notional interest rate from period t−1 to t. The first pension

that is received by generation t in period t+Bt is given by:

Pt,t+Bt =
Kt,t+Bt

Γt,t+Bt
,

Existing pensions are adjusted according to:

Pt,t+a−1 = Pt,t+BtΘt+Bt,t+a−1,

where Θt+Bt,t+a−1 is the cumulative adjustment rate factor given by:

Θt+Bt,t+a−1 =
t+a−1∏

s=t+Bt+1

(1 + ϑs),

for Bt + 2 ≤ a ≤ Xt and ϑt is the adjustment rate from period t − 1 to t. The two

possibilities for specifying the remaining life expectancy (equations (17a) and (17b)) are

now given by:

Γt,t+Bt = X̃t+Bt −Bt,

Γt,t+Bt = Xt −Bt.

The different types of notional interest rate are again given by:

ρt = gWt ,

ρt = gWt + gLt ,

ρt = gWt + gLt −
γ

Xt−1
,

where now gWt = Wt−Wt−1

Wt−1
, gLt = Lt−Lt−1

Lt−1
and where gLt = γ

Xt−1
if the retirement age is

chosen according to B̃t = X̃t
1+z

(or the respective integer values thereof).
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