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Abstract

We develop and solve a dynamic optimization model of a bank’s balance sheet, highlighting the critical
factors influencing banks’ optimization dynamics: balance sheet adjustment costs and the spreads be-
tween bank-specific lending and deposit rates and the interbank rate. We apply the model to evaluate
the impact of the European Central Bank’s (ECB) targeted longer-term refinancing operations (TLTROs)
on banks in a simulation exercise, and we estimate the policy functions with monthly data from 200
large euro area banks spanning from 2007 to 2021. The estimation results confirm the theoretical predic-
tion and simulations that the TLTRO programs did not stimulate lending to the private sector, but banks
mainly increased their central bank assets and liabilities, especially with TLTRO III in 2020, in which the
ECB implemented a reversal of its policy rates by setting the TLTRO rate below the deposit facility rate.
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Non-Technical Summary

Since the 2007-2008 financial crisis, many central banks have used unconventional monetary policies to
meet inflation targets. In the euro area, the ECB combined asset purchase programs with new refinanc-
ing facilities, especially in response to COVID-19. These measures have significantly impacted central
banks’ balance sheets and monetary policy. This paper focuses on how these measures affected the bal-
ance sheets of banks, highlighting the need to understand the responses of banks, which is crucial for
policymakers but methodologically challenging due to the need to unravel various effects and channels.

We propose a dynamic optimization model of a bank’s balance sheet to analyze how banks respond to
monetary policy measures, specifically the ECB’s TLTRO program. The interaction with other instru-
ments and mitigation elements within TLTROs means that their impact on lending volumes, rates, and
bank profitability can only be understood through a structural model.

The adjustment cost approach has already been used to model optimal bank behavior in Cosimano (1988);
Elyasiani et al. (1995); Kopecky and Van Hoose (2012), without including central bank assets or liabili-
ties. We analytically solve the dynamic programming model of the bank’s balance sheet optimization by
constructing policy functions that prescribe optimal adjustments to future balance sheet positions based
on current positions and expected and current interest rate changes. In the model, we examine three
cases: Case 1, which excludes adjustment costs; Case 2, incorporating both adjustment costs and port-
folio separation; and Case 3, featuring adjustment costs but no portfolio separation. For each case, we
derive optimal policy functions. The policy functions are empirically testable. For Case 3, we show
theoretically that the decision to increase or decrease lending to non-financial corporations depends on
the volumes and interest rates of all other balance sheet items. This finding has important implications
for the evaluation of monetary policy measures.

In the econometric approach, we derive two testable hypotheses based on the estimated coefficients of a
panel vector autoregression model, whether adjustment costs and portfolio separation are present. Our
empirical results suggest the presence of adjustment costs and no portfolio separation (Case 3). We can
determine which optimal strategies the average bank follows after the introduction of TLTRO. We go
beyond the ideas of Castillo Lozoya et al. (2022), who identify four strategies: lending to non-financial
corporations (NFCs) and households (HH), holding reserves in the central bank, buying government
securities, and substituting for market funding. We identify a fifth strategy: granting interbank market
loans.

Most importantly, we can explain why during the pandemic, banks that opted for TLTROs held these
funds as central bank assets. This “take it and leave it” strategy follows directly from the optimization
model, since the ECB set the TLTRO rate at −1% (lending costs for banks) while the deposit rate ranged
from 0% to −0.5% due to the two-tier system on bank reserves. Consequently, the ECB provided a
risk-free carry trade without capital requirements until the end of 2024.



1. Introduction

Since the global financial crisis of 2007–2008, many central banks have implemented a variety of uncon-
ventional monetary policy measures to meet their inflation targets. In the euro area, the ECB combined
different asset purchase programs with new refinancing facilities, in particular, in response to the COVID-
19 pandemic. The footprint of these measures on central banks’ balance sheets and the implications for
monetary policy is ongoing (e.g., Fricke et al., 2024; De Grauwe and Ji, 2023; Borio, 2023). Here, we
focus on the initial transmission of the measures and their subsequent effects on banks’ balance sheets.
A clear understanding of how banks respond to such measures is essential for policymakers and is also
challenging from a methodological point of view, because it requires the disentanglement of the effects
of the different measures and of the channels involved.

Banks seek to optimize their balance sheet structure in response to monetary policy measures. We refer
to this as the bank balance sheet channel of monetary policy, which has been extensively explored in
empirical research (Jiménez et al., 2012; Igan et al., 2017; Bittner et al., 2022). This bank balance sheet
channel of monetary policy includes the famous “bank lending channel” (e.g., Bernanke and Blinder,
1988; Kashyap and Stein, 1994; Bernanke and Gertler, 1995) and the recently introduced “bank deposit
channel” (Drechsler et al., 2017). These channels operate simultaneously, interact with each other, and
collectively shape the bank’s balance sheet.

We propose a dynamic optimization model of a bank’s balance sheet to study how a bank responds to
monetary policy measures. We apply the model to study the effects of the ECB’s targeted longer-term
refinancing operation (TLTRO) program. Due to the interaction with other instruments and the elements
to mitigate their possible side effects, embedded in the design of the TLTROs, the impact on lending
volumes, lending rates or bank profitability can be better understood with a structural model. It is not
surprising that the existing literature evaluating the TLTRO programs shows that the net effect on bank
lending or profitability is ambiguous. It depends, among other things, on credit demand, bank capitaliza-
tion, the bank’s business model, and its risk aversion (Gambacorta and Shin, 2018; Abadi et al., 2023),
which are all variables beyond the control of the central bank. The TLTROs illustrate the limitations of
simpler, non-structural models.

Nonstructural models often neglect banks’ optimization behavior and the interaction between the chan-
nels. The focus of such models is on individual balance sheet components, without considering the joint
dynamics of the balance sheet items. Furthermore, due to confounding factors, studying only a single
balance sheet component or a single transmission mechanism tends to overestimate or underestimate the
effects of monetary policy measures. Hence, such models likely fail to capture the effects of monetary
policy measures, and a comprehensive approach is required to understand the mechanics of the measures
and the responses by banks.

TLTROs were implemented together with the asset purchase program (APP). The result was an increase
in the balance sheet not only of the Eurosystem but also of the banking system. In this environment,
an increase in bank lending to the real economy is easily found, as some papers have done (Altavilla
et al., 2020, 2023). We propose a different angle and analyze how banks adjusted their balance sheets and
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how they used the funds provided by the program. Focusing solely on the increase in lending provides
an incomplete picture and does not capture how TLTROs have fundamentally reshaped banks’ balance
sheets.

Our theoretical model captures a bank’s behavior over many periods. It allows measuring balance sheet
rebalancing and expansion under the constraint that total assets equal total liabilities, and to predict
how a bank adapts its balance sheet in response to changing interest rates. An important feature of the
model is adjustment costs, which have their origins in the investment theory developed by Eisner (1969);
Lucas (1967); Gould (1968). Without adjustment costs, there would be an instantaneous jump to the
new optimal balance sheet structure when needed. With adjustment costs, one would not observe an
instantaneous jump, but instead a gradual adjustment to the optimal balance sheet structure.

The adjustment cost approach has already been used to model the optimal bank behavior in Cosimano
(1988); Elyasiani et al. (1995); Kopecky and Van Hoose (2012) but without including central bank assets
or liabilities. We solve the dynamic programming model of the bank’s balance sheet optimization by
constructing policy functions that prescribe how to optimally adjust the future balance sheet positions
given the current balance sheet positions. In contrast to Elyasiani et al. (1995), we correctly solve the
model when portfolio separation does not hold, that is, when the bank’s profit function is not separable
in all assets and liabilities (Sealey, 1980, 1985).

Our contribution to the literature is as follows. First, we model the behavior of banks in a dynamic
optimization model with adjustment costs that also include central bank assets and liabilities in a mo-
nopolistically competitive banking system. We study three different cases in the model: Case 1 without
adjustment costs and with portfolio separation, Case 2 with both adjustment costs and portfolio separa-
tion, and Case 3 with adjustment costs and no portfolio separation. For each case, we theoretically derive
the exact optimal policy functions that are empirically testable. In the second and third cases, the policy
functions are analytically derived using the Blanchard-Kahn method (Blanchard and Kahn, 1980).

In the first case, the optimal policy function for each asset and liability position depends only on the
corresponding interest rate (e.g., the NFC lending rate for NFC loans), the interbank rate, and the holding
costs of the balance sheet position. In the second case, the optimal policy is a function of the lagged
balance sheet position, the corresponding interest rate, and the interbank rate (for example, the optimal
NFC loan volume depends on the lagged NFC loan volume, the expected NFC lending, and the expected
3-month Euribor). In the third case, the optimal balance sheet position depends on the lags of the other
balance sheet positions, all interest rates, and the interbank rate.

Second, we simulate the model for the three cases and estimate the resulting policy functions. In the
simulation, we also incorporate how the TLTRO conditions have improved over time. On the one hand,
our simulation suggests that the impact of TLTROs on lending to non-financial corporations and house-
holds would be greatest if there were no adjustment costs and portfolio separation (Case 1). On the other
hand, the growth in lending would be the lowest if there were adjustment costs but no portfolio separation
(Case 3).

Third, we use a confidential, harmonized, and granular monthly bank-level dataset on lending and deposit
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rates and individual balance sheet information covering a representative sample of around 200 large euro
area banks from July 2007 to December 2021 available at the ECB to test the theoretically derived policy
functions for the presence of adjustment costs and no portfolio separation.

Our empirical findings provide robust evidence of adjustment costs (Case 2 and Case 3) and most proba-
bly also of no portfolio separation (Case 3). This offers a compelling explanation, compared to previous
studies, for the limited effects of TLTROs in boosting lending to non-financial corporations. Banks
mainly take up TLTROs and leave them as central bank assets.4 Second, we find that there was portfolio
rebalancing on the liability side because banks can replace expensive funding (mostly securities and, to a
lesser extent, deposits) with TLTROs under very favorable conditions. In combination with rising policy
rates, this led to a massive increase in bank profitability, especially for banks that held central bank as-
sets funded by TLTROs. Since the ECB DFR has been positive, the exemption scheme limit has had no
impact on the volume of the carry trade. The TLTROs have therefore improved the impaired profitability
of banks following the introduction of negative interest rates, but they only lead to a limited increase in
lending to the real economy.

The paper is structured as follows. After describing the ECB’s TLTRO program in Section 2, we intro-
duce the theoretical model in Section 3, and present the solutions as policy functions. In Section 4, we
provide an overview of the euro area banking dataset used for the empirical analysis. Section 5 outlines
the empirical approach used to estimate the policy functions. In Section 6, we simulate data for Case 1,
Case 2, and Case 3 to see if the estimated policy functions are in line with our theoretical predictions.
The results of the panel estimation with real data are summarized and discussed in Section 7. Section 8
summarizes and concludes.

2. The ECB’s TLTRO program

The TLTRO program replaced longer-term refinancing operations, which had been introduced in 2008
and already offered fixed rates and full allotment. Before 2008, the ECB conducted weekly auctions in
which banks could bid for mostly short-term central bank liabilities. In 2008, the list of eligible collateral
accepted for Eurosystem refinancing operations was expanded, allowing banks to refinance larger shares
of their balance sheets with the Eurosystem.

With TLTRO I, the ECB incorporated the idea of “funding for lending” into fixed rate longer-term refi-
nancing operations. It reduced the rate for fixed-rate tenders for main refinancing operations to be closer
to the ECB DFR, provided that banks fulfilled the lending criteria of around 0% for most banks (i.e., no
deleveraging of loan portfolios). As the demand for loans for house purchases was already very high
at that time, this type of loan was excluded from the calculation of the interest rate that banks had to
pay on the funds borrowed under the TLTROs. Over the years, the refinancing operations became more

4For a discussion on the implications of high excess reserves for the transmission of monetary policy, see Fricke et al.
(2024) and also De Grauwe and Ji (2023).
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favorable for banks in an attempt to stimulate their lending and to reduce their refinancing costs.5

Figure 1: Borrowing from the Eurosystem

Source: ECB. Barbiero et al. (2021); Altavilla et al. (2023). The figure shows developments in borrowing
from the Eurosystem broken down into different lending facilities. Volumes are expressed in millions of eu-
ros on the y-axis. “MROs” are main refinancing operations. “LTROs (orig. maturity < 3y)” are longer-term
refinancing operations with an original maturity below three years. “3y LTROs” are longer-term refinancing
operations with a three-year original maturity. “TLTRO I”, “TLTRO II” and “TLTRO III” refer to the three
programs of targeted longer-term refinancing operations. “PELTROs” are pandemic emergency longer-
term refinancing operations. “2020 bridge LTROs” are longer-term refinancing operations introduced to
bridge liquidity needs between the announcement of the TLTRO recalibration in March 2020 and the first
subsequent operation in June 2020.

The conditions of TLTRO III, set during the COVID-19 crisis, were particularly generous. The intention
for this was to reassure banks to keep lending to firms and households for consumption, but also to
mitigate the costs of a significant rise in excess liquidity due to the implementation of the pandemic
emergency purchases program (PEPP).6

5See https://www.ecb.europa.eu/mopo/implement/omo/tltro/html/index.en.html and Table 1 for an
overview of the TLTROs.

6See https://www.ecb.europa.eu/mopo/implement/pepp/html/index.en.html for details of the program.
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Table 1: Summary of TLTRO parameters

TLTRO Date Allowance Interest Rate(s) Growth-Benchmark Reference Period

I (8 operations) 2014-16 7% ECB DFR+0.35% 0% May 14-Apr 16
II (4 operations) 2016-17 30% ECB DFR/ ECB DFR+0.5% 0% & 2.5% Feb 16-Jan 18
III (2 operations) 2019 30% ECB DFR/ ECB DFR+0.5% 0% & 1.15% Apr 19-Mar 21
III (4 operations) 2020 50% ECB DFR-0.5%/ ECB DFR 0% Mar 20-Mar 21
III (4 operations) 2021 55% ECB DFR-0.5%/ ECB DFR 0% Oct 20-Dec 21

Source: Da Silva et al. (2021).
ECB DFR refers to the ECB Deposit Facility Rate.
Growth-Benchmark refers to the lending growth benchmark. For a few tranches of the TLTRO programs, different
growth benchmarks were set for banks that deleveraged before the program and those who did not (e.g., 0% and
2.5%). Since 2020, the zero-growth benchmark was extended to all participating banks.
For TLTRO III 2019, the indicated pricing does not apply between June 2020 and June 2022. Then, it is the pricing
shown for TLTRO III 2020 and 2021 that applies.
For TLTRO III 2020 and TLTRO III 2021, the indicated pricing only applies between June 2020 and June 2022.
Outside this period, the pricing of TLTRO III 2019 applies.

Provided that banks were able to meet the lending criteria, TLTRO III marked the first time in the history
of the ECB that it was cheaper to borrow from the central bank than to deposit. According to Schnabel
(2021), this was a major game-changer. We also argue that TLTRO III represents a new kind of liability
on banks’ balance sheets.

From an economic perspective, the ECB offered a carry trade, banks borrow at the ECB DFR-0.5% and
deposit at the ECB DFR. From June 2020 to June 2022, the ECB implemented an exemption scheme on
central bank assets to compensate banks for the negative ECB DFR. The ECB decided on 12 September
2019 to set the initial multiplier for the calculation of the allowance at six times the minimum reserve
requirement, and the initial applicable remuneration rate at 0%.7 During this period, banks borrowed at
−1% and deposit a big part of their central bank assets even at 0%.

The effect of this carry trade can be seen in Figure 1. The total value of outstanding central bank liabil-
ities skyrocketed from around 700 billion euro under TLTRO II to 2, 000 billion euro under TLTRO III.
Clearly, the asset purchase programs (APPs) also had a positive impact on central bank reserves. How-
ever, the strategy of selling securities and keeping the transfers from the central bank as central bank
assets was only profitable under the TLTRO III funding conditions.

Before TLTRO III, banks pushed central bank assets off their balance sheets by purchasing other secu-
rities instead of lending to the real economy. This “hot potato” effect was documented by Ryan and
Whelan (2021). Only under TLTRO III conditions, holding central bank assets became attractive, turning
them into “cool cucumbers” (Fricke et al., 2024) as can be seen in Table 2.8

7See https://www.ecb.europa.eu/mopo/two-tier/html/index.en.html for more details of this important mea-
sure.

8For the Eurosystem balance sheet by component from 2017 to 2021, see https://www.ecb.europa.eu/pub/annual/
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Figure 2: Estimated percentage of TLTRO funds that banks stored and redistributed

Source: ECB. Barbiero et al. (2021) Box 3 Chart B. The estimated coefficients in the chart are based on
a panel data local projections model which relates daily changes in a bank’s excess liquidity holdings to:
its own TLTRO borrowing, panel (a); TLTRO borrowing by other banks in the Eurosystem, panel (b),
controlling for other refinancing operations; the bank’s own asset sales and asset sales by other banks to
the Eurosystem; redemptions of assets bought by the Eurosystem; and autonomous factors at the euro area
level. The first estimation period is August 2014 to 31 May 2020 for settlement before the June 2020
TLTRO, and 1 June 2020 to 1 May 2021 for settlement after the June 2020 TLTRO III. As the results are
model-based and due to noise in the data and the inability to fully control for autonomous factors at the
bank level (as such data are not available), the sum of funds stored in banks’ own Eurosystem accounts
and TLTRO funds redistributed to others do not exactly add up to 100% and are subject to uncertainty, as
reflected by the shaded areas denoting 90% confidence intervals.

During the COVID-19 crisis, the zero-growth lending benchmark was extended to all banks. Hence,
all participating banks were only required to keep their lending volumes constant to achieve the most
favorable funding terms. Therefore, TLTRO III had only a limited effect on credit growth but could have
prevented a potential collapse of credit supply during the pandemic. In Figure 3, the small impact of
TLTROs on the growth of NFC lending can already be seen in a simple reduced-form model.

balance/html/ecb.eurosystembalancesheet202206_commentary˜fa1d143aa2.en.html .
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Figure 3: TLTRO participation and loan growth
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Source: ECB. Altavilla et al. (2020). Own calculations. We replicate the results in Figure 9 of Altavilla et al. (2020)
with the same raw data set, which we describe in detail in Section 4. In particular, we estimate the following equation.
∆Li,t+h = αc,t,h + βhT LTRODummy

i,t . h runs from 1 to 24 months. ∆Li,t+h refers to the cumulative NFC loan growth up to 24

months. T LTRODummy
i,t is a dummy variable that takes the 1 if bank i participate takes up central bank liabilities in the last

three month and 0 otherwise. αc,t,h are country-time fixed effects.

Empirical studies on the TLTRO effects yield ambiguous results. Albertazzi et al. (2021) compare the
transmission of conventional and unconventional monetary policy for banks in the euro area and find
different results for bank lending and bank capital channels. They find that business models, and therefore
the underlying balance sheet structures, are important with regard to the transmission of unconventional
monetary policy. Altavilla et al. (2020, 2023) study the impact of the TLTROs and their interaction with
the macroprudential measures in releasing certain capital buffers in the euro area during the COVID-19
crisis. Altavilla et al. (2020) find an increase in NFC loan growth of around 1.7 percentage points in each
year.

Da Silva et al. (2021) develop a static theoretical model for understanding credit supply and test it empiri-
cally on credit registry data for the euro area. Their main findings are that the TLTRO III had a significant
effect on credit supply, especially because the pricing of the TLTROs below market rates boosted banks’
profitability. Castillo Lozoya et al. (2022) study the impact of the change in the terms to TLTRO III on
the balance sheets of Spanish banks. They describe possible adjustment strategies and find that lending
and holding central bank assets are the most important ones. Perdichizzi et al. (2023) examine the impact
of TLTROs on the local economic development of Italian provinces and found no beneficial effects for
firms, except for a general improvement in banks’ funding conditions.

3. Theoretical model

The theoretical model we examine is a dynamic optimization problem that incorporates adjustment costs.
Banks adjust their balance sheets when lending or deposit rates change or new instruments like TLTROs
emerge. Portfolio rebalancing will generally take place gradually over time and will not be performed
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within one period. The observation that banks do not immediately change their balance sheet structure to
shocks motivates the concept of adjustment costs, which was originally developed in investment theory by
Eisner (1969); Lucas (1967); Gould (1968); Treadway (1969); Uzawa (1969). If there were no adjustment
costs between periods, there would either be no investments if a bank already held the optimal capital
stock, or else there would be an instantaneous jump to the new optimal balance sheet structure.

We introduce the theoretical model and derive the policy functions in Section 3.1. In Section 3.2, we
discuss the theoretical effects of reversed ECB policy rates.

3.1. Dynamic optimization of a bank’s balance sheet

The model is an extension of the model in Elyasiani et al. (1995), who study the implications of both
loan and deposit adjustment costs with and without the assumption of portfolio separation in perfectly
competitive banking markets. In our setting, a bank takes market interest rates as given, and bank-specific
interest rates as predetermined. The decision variables are balance sheet quantities. Local market power
is therefore possible, similar to a monopolistically competitive banking system, but we do not model the
strategic interaction between banks.

Consider a representative bank with nD different types of deposits and nL different types of loans on
its balance sheet with depositors and obligors outside the banking sector, for example, NFC deposits and
consumption loans. Let D j,t ≥ 0 and Li,t ≥ 0 denote the respective volumes in period t with t = 0, 1, 2, . . . ,
j = 1, . . . , nD and i = 1, . . . , nL.

We assume that the only other balance sheet items are deposits from the central bank and excess reserves
held with the central bank, DCB

t and LCB
t . For instance, TLTROs would be captured under DCB

t . Note
that we define LCB

t as the central bank asset holding above the minimum reserve requirement to keep the
parameter ρ in our model. For all t = 0, 1, 2, . . . , we have

D j,t, Li,t,DCB
t , LCB

t ≥ 0 for all j and i,

as a bank cannot hold negative loans or deposits. Let d j,t be the deposit rate for deposit type j, j =

1, . . . , nD, and let li,t be the lending rate for loan type i, i = 1, . . . , nL in period t. Likewise, let dCB
t denote

the rate for deposits from the central bank, and let lCB
t be the remuneration rate for excess reserves held at

the central bank, e.g., the ECB DFR. Let Ft be the net difference between interbank assets and interbank
liabilities in period t, and let rt be the interbank rate.

The revenue of the bank in a period is driven by the profits generated by the different loans minus the
refinancing costs and minus the holding and adjustment costs. That is, the net portfolio revenue πt in
t ≥ 1 is
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πt =

nL∑
i=1

li,tLi,t −

nD∑
j=1

d j,tD j,t + rtFt + lCB
t LCB

t − dCB
t DCB

t −

−

nL∑
i=1

φ1,i

2
L2

i,t −

nL∑
i=1

φ2,i

2
(
Li,t − Li,t−1

)2
−

nD∑
j=1

θ1, j

2
D2

j,t −

nD∑
j=1

θ2, j

2

(
D j,t − D j,t−1

)2
−

−
ζ1

2
(LCB

t )2 −
ζ2

2

(
LCB

t − LCB
t−1

)2
−
κ1

2
(DCB

t )2 −
κ2

2

(
DCB

t − DCB
t−1

)2
−
δ

2
F2

t ,

(1)

subject to the simplified balance sheet constraint,

nL∑
i=1

Li,t + Ft + LCB
t = (1 − ρ)

nD∑
j=1

D j,t + DCB
t , (2)

where ρ ∈ (0, 1) is the minimum reserve requirement. The balance sheet constraint (2) asserts that the
amount of assets always equals the amount of liabilities.

The parameters φ1,i, θ1, j, ζ1, and κ1 are the parameters of holding costs associated with the service of
existing loans, deposits, central bank liabilities, and central bank assets. We assume that ζ1 > 0 and
κ1 > 0, e.g., fees for having an account at the ECB and personal costs of managing these accounts. These
holding costs are most likely much lower than φ1,i and θ1, j.

The parameters φi,2, θ j,2, ζ2, and κ2 are the adjustment cost parameters. In the adjustment costs literature,
there are usually quadratic adjustment costs assumed for changing the bank’s portfolio from one period
to the next (Gould, 1968). Flannery (1982) provides strong empirical evidence for deposit adjustment
costs. On the loan side, similar costs are likely to exist. If banks want to increase their loans, they will
need more staff to process loan applications and to screen the granted loans. If a bank wants to reduce
loans, they will need to sell them at a discount to other banks. Based on the solution of the model, we
will derive statistically testable hypotheses that provide evidence for the presence of adjustment costs.
We assume φi,2, θ j,2, ζ2, κ2 ≥ 0.

Adjustment and holding costs are deep structural parameters of the model that are independent of policy
changes by the central bank. The policy changes of the central bank are reflected in the setting of lCB

t
and dCB

t . For a given level of interest rates, the holding costs of the bank determine the size of the
balance sheet item and, in relation to each other, the balance sheet decomposition. The adjustment costs
determine the speed of convergence to a new equilibrium balance sheet structure after a shock to any of
the interest rates (see Appendix B).

An important parameter of the profit function is δ, the cost parameter for the quadratic net position on
the interbank market Ft. If δ > 0, then it couples the different balance sheet items. If δ = 0, the profit
function in equation (1) is separable in all assets and liabilities (Sealey, 1980, 1985).

According to the portfolio separation theory (Sealey, 1985), banks separately maximize their interest
income on the asset side of the balance sheet and minimize their expenses on the liability side. Sealey
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(1985) derives the following conditions for portfolio separation: (i) shareholder unanimity on optimal
portfolio decisions, (ii) separability of the resource cost functions for the assets and liabilities of the
banks, and (iii) access by banks to a market for funds with equal ex-post borrowing and lending rates.9

If δ > 0, there is no portfolio separation, violating condition (ii) of Sealey (1985). No portfolio separation
implies that no market exists where banks can close their funding gap at the same interest rate and without
adjustment costs. Some researchers argue that the interbank market could be this market.10 Also, banks
cannot turn to the central bank to meet their short-term liquidity needs either because there is usually a
spread between the ECB lending facility and the ECB deposit facility rate.

The bank seeks to maximize the present value of the expected future cash flows by optimally adjusting the
balance sheet from one period to another, which leads to a dynamic programming problem. Without loss
of generality, we assume nL = nD = 1 from now to simplify the notation. The mathematical structure that
we describe below and, likewise, the argumentation in Appendix A also holds for the case nL, nD > 1.
We write Dt and Lt for the deposit and loan volumes, and denote the corresponding interest rates by dt

and lt.

By equation (2), the net profit in equation (1) for nD = nL = 1 is a function of Dt, Lt, DCB
t and LCB

t . Given
initial values D0, L0,DCB

0 , LCB
0 ≥ 0, we write equation (1) as

πt = ltLt − dtDt + rtFt + lCB
t LCB

t − dCB
t DCB

t −

−
φ1

2
L2

t −
φ2

2
(Lt − Lt−1)2

−
θ1

2
D2

t −
θ2

2
(Dt − Dt−1)2

−

−
ζ1

2
(LCB

t )2 −
ζ2

2

(
LCB

t − LCB
t−1

)2
−
κ1

2
(DCB

t )2 −
κ2

2

(
DCB

t − DCB
t−1

)2
−
δ

2
F2

t

= (lt − rt)Lt − (dt − (1 − ρ)rt)Dt + (lCB
t − rt)LCB

t − (dCB
t − rt)DCB

t −

−
φ1

2
L2

t −
φ2

2
(Lt − Lt−1)2

−
θ1

2
D2

t −
θ2

2
(Dt − Dt−1)2

−

−
ζ1

2
(LCB

t )2 −
ζ2

2

(
LCB

t − LCB
t−1

)2
−
κ1

2
(DCB

t )2 −
κ2

2

(
DCB

t − DCB
t−1

)2
−
δ

2
F2

t ,

with balance sheet constraint
Lt + LCB

t + Ft = (1 − ρ)Dt + DCB
t . (3)

Let N : R4
+ × R

4
+ × R

5 → R be the net profit function, that is,

πt = N(Xt−1, Xt,Zt), t = 1, 2, . . . ,

9The theory of portfolio separation is also connected to a bank’s asset and liability management (Consigli and Dempster,
1998). No portfolio separation might explain the empirical evidence that almost every bank in the euro area has an asset and
liability management (Deloitte Central Europe, 2019) in one department.

10However, it is well documented that the interbank market in the euro area is an over-the-counter market with frictions
(Gabrieli, 2011; Temizsoy et al., 2017) and banks, on average, pay different interbank market lending and deposit rates
(Sigmund and Siebenbrunner, 2024).
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where we set Xt := (Dt, Lt,DCB
t , LCB

t ) and Zt :=
(
dt, rt, lt, dCB

t , lCB
t

)
. The Hessian of N is negative semi-

definite, thus N is concave.

Interest rates are exogenous random variables that we assume to be uniformly bounded.

Assumption 1. There is a bounded set B ⊂ R5 such that

Zt ∈ B

for all t ≥ 0.

In this chapter, we do not make any assumptions about the stochastic dynamics of interest rates Zt. For
the simulation in Section 6, we assume that the rates follow an AR(1) process. In addition, dt and lt are
bank-specific and heterogeneous between banks, implying that banks have local market power.

The dynamic programming problem of the bank is to find a sequence of functions

ξt : Bt → R4
+, t = 1, 2, . . . ,

such that the total expected future return is maximal if Xt = ξt[Z1, . . . ,Zt] for all t ≥ 1. The sequence
{ξt}t≥1 is called a plan: it prescribes how to choose the portfolio composition in each future period t,
contingent on the information available in time t. The portfolio composition Xt in period t will thus be
chosen as a function of the realizations of exogenous shocks up to t. However, the plan {ξt}t≥1, is selected
using only the information available in t = 0.

The bank considers only plans that maximize the net return for each period. If the portfolio yields a loss
in a period, the bank will adjust its balance sheet to minimize the loss in the next period. Thus, a plan
is only feasible if it generates returns with πt+1 ≥ πt for t ≥ 0. As N is concave, and we assume that the
interest rates are bounded, there is an upper bound R = R(X0) such that a plan is only feasible from X0 if
ξt : Bt → Γ(X0) for t = 1, 2, . . . and Γ(X0) := {X ∈ R4

+ : |X| ≤ R}.

For given X0 ∈ R
4
+, let Ξ(X0) be the set of sequences of measurable functions {ξt : Bt → Γ(X0)}t≥1, and let

Et denote the expectation conditional on the information available at time t. The optimization problem of
the bank then reads

sup
ξ∈Ξ(X0)

E0

 ∞∑
t=0

βtN (Xt, Xt+1,Zt+1)

 , (4)

where Xt = ξt[Z1, . . . ,Zt] for t = 1, 2, . . . , and β ∈ (0, 1) is the discount factor.

We will establish a solution of (4) by constructing a time-invariant policy function g that generates an
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optimal plan ξ,

ξ1 = max{g(X0,Z1), 0}, ξt[Z1, . . . ,Zt] = max{g(ξt−1[Z1, . . . ,Zt−1],Zt), 0}, t ≥ 2.

To find the policy function, consider the stochastic Euler equations for (4),

0 = ∇2N(Xt−1, Xt,Zt) + βEt [∇1N(Xt, Xt+1,Zt+1)] , t ≥ 1, (5)

where ∇1N and ∇2N denote the vectors of partial derivatives of N with respect to the first two arguments,
the state variables, and to the third and fourth argument, the control variables. The Euler equations (5)
are necessary conditions for a sequence Xt = (Dt, Lt,DCB

t , LCB
t ) in the interior of Γ(X0) to be optimal.

We study (4) and (5) for three different cases:11

Case 1: No adjustment costs and portfolio separation: φ2, θ2, κ2, ζ2, δ = 0

Case 2: Adjustment costs and portfolio separation: φ2, θ2, κ2, ζ2 > 0, δ = 0

Case 3: Adjustment costs and no portfolio separation: φ2, θ2, κ2, ζ2 > 0, δ > 0.

In Case 1, the Euler equations decouple, and its solution in period t will only depend on the interest rates
in t. In Case 2 and Case 3, the Euler equations (5) lead to a rational expectation system of Blanchard-Kahn
type. We will show that the system has four explosive eigenvalues,

λ1, . . . , λ4 > 1,

and four non-explosive eigenvalues,
λ5, . . . , λ8 < 1.

For the specific ordering of the eigenvalues used, see Appendix A. We will find that the number of explo-
sive eigenvalues equals the number of non-predetermined variables, so that we can apply Proposition 1
in Blanchard and Kahn (1980) to construct a solution of (5).

The main result is the following theorem. The proof is given in Appendix A.

Theorem 1. Let φ1, θ1, κ1, ζ1 > 0, X0 ∈ R
4
+, and β ∈ (0, 1) be given. Let Assumption 1 hold, then we

obtain the following results:

(i) Case 1: If φ2, θ2, κ2, ζ2, δ = 0, there is a unique solution of (4), given as

Dt =
(1 − ρ)rt − dt

θ1
, Lt =

lt − rt

φ1
, DCB

t =
rt − dCB

t

κ1
, LCB

t =
lCB
t − rt

ζ1
(6)

in the interior of Γ(X0) for t ≥ 1.

11In all cases, we assume that holding costs apply, φ1, θ1, κ1, ζ1 > 0.
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(ii) Case 2: If φ2, θ2 > 0 and δ = 0, there is a unique solution of (4), given as

Dt =

∞∑
k=0

λ−(k+1)
1

βθ2
Et

[
(1 − ρ)rt+k − dt+k

]
+ λ5Dt−1

Lt =

∞∑
k=0

λ−(k+1)
2

βφ2
Et [lt+k − rt+k] + λ6Lt−1

DCB
t =

∞∑
k=0

λ−(k+1)
3

βκ2
Et

[
rt+k − dCB

t+k

]
+ λ7DCB

t−1

LCB
t =

∞∑
k=0

λ−(k+1)
4

βζ2
Et

[
lCB
t+k − rt+k

]
+ λ8LCB

t−1

(7)

in the interior of Γ(X0) for t ≥ 1.

(iii) Case 3: If θ2, φ2 > 0 and δ > 0 with θ2 ≥ δ, there is a unique solution of (4), given as

Dt = (λ1 − λ5)U1,t +
∑
j,1

p1 jU j,t + q11Dt−1 + q12Lt−1 + q13DCB
t−1 + q14LCB

t−1

Lt = (λ2 − λ6)U2,t +
∑
j,2

p2 jU j,t + q21Dt−1 + q22Lt−1 + q23DCB
t−1 + q24LCB

t−1

DCB
t = (λ3 − λ7)U3,t +

∑
j,3

p3 jU j,t + q31Dt−1 + q32Lt−1 + q33DCB
t−1 + q34LCB

t−1

LCB
t = (λ4 − λ8)U4,t +

∑
j,4

p4 jU j,t + q41Dt−1 + q42Lt−1 + q43DCB
t−1 + q44LCB

t−1

(8)

in the interior of Γ(X0) for t ≥ 1, with

Ui,t = −

∞∑
k=0

λ−(k+1)
i

{
ĥi1

βθ2
Et

[
(1 − ρ)rt+k − dt+k

]
+

ĥi2

βφ2
Et [lt+k − rt+k] +

+
ĥi3

βκ2
Et

[
rt+k − dCB

t+k

]
+

ĥi4

βζ2
Et

[
lCB
t−k − rt+k

]} (9)

and coefficients pi j, qi j, and ĥi j, i, j = 1, . . . , 4.

The proof of Theorem 1 will show that the Euler equations (5) are sufficient conditions for an interior
plan to be optimal. That is, whenever the plans given by (6) – (8) yield positive Dt, Lt, DCB

t and LCB
t ,

equations (6) – (8) give policy functions for the optimization problem (4), defining unique solutions for
the different cases. In all three cases, the optimal net interbank position is given by

Ft = Lt + LCB
t − (1 − ρ)Dt − DCB

t .
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The solution (8) in Case 3 is defined for δ ≥ 0, and equation (8) simplifies to equation (7) with δ = 0, see
Appendix A.

The solutions are driven by the spreads of the different interest rates to the interbank rate,

(1 − ρ)rt − dt, lt − rt, rt − dCB
t , lCB

t − rt. (10)

If all these spreads are strictly positive for all t, the solutions (6) and (7) give inner solutions of (4). By
taking the maximum of zero and the policy function for each item on the balance sheet, these solutions
can be easily extended to solutions of (4) also covering situations where the spreads in (10) are zero or
turn negative.

In Case 3, Kuhn-Tucker case distinctions are necessary to extend the solution to encompass negative
interest rate spreads in equation (10). Each component of (8) is a function of all spreads, where the “off-
diagonal” spreads are of order δ. For positive spreads with generic cost parameter settings, (8) gives a
solution of (4). This was exactly the setting of TLTRO III, and (8) applies to the environment we analyze
in this paper.

All three solutions in Theorem 1 have a clear economic interpretation. In Case 1, the bank adjusts its
balance sheet instantaneously to the optimal structure. The adjustment costs in Case 2 require considering
not only the current period, but also planning for the entire future and taking into account the structure of
the current balance sheet when deciding the new one. If the bank expects a spread to be close to or equal
to zero, the second term on the right-hand side of (7) is the relevant driver for the respective position,
prescribing to reduce the respective volumes as λ5, . . . , λ8 < 1. If the relevant spread of a balance sheet
item is favorable for the bank, i.e., well positive, the first term on the right-hand side of (7) will dominate
the dynamics and let the volumes of that item rise.

This is in principle also the underlying mechanics of Case 3, with the additional challenge of a portfolio
that is fully coupled by δ > 0. Any additional funding gap resulting from “optimal” loan and deposit
decisions cannot be closed on the interbank market without additional costs of order δ. In line with this,
the steady-state solutions of Case 1 and Case 2 are identical (see Appendix B). In Case 3, the steady
states will depend on the interbank position. For instance, the steady state of L will be below that in
Case 1 or Case 2 if there is a funding gap that needs to be closed on the interbank market.

3.2. How do TLTROs influence the bank optimization model

The interest rate spreads in equation (10) are of specific importance. Assuming (1 − ρ)rt − dt > 0 and
lt − rt > 0 is consistent with our empirical data on interest rates presented in Figure 6. If lt − rt < 0, the
bank would not grant any loans Lt, but would instead only provide interbank loans refinanced by deposits
Dt. On the other hand, if (1− ρ)rt − dt < 0, the bank would not supply deposits Dt and would only supply
interbank deposits. If (1 − ρ)rt − dt < 0 and lt − rt < 0, the bank might not operate at all.
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Consider now the spreads of rt − dCB
t and lCB

t − rt. In most periods of our data, the ECB fixed rate in
fixed rate tenders is above the ECB DFR: dCB

t > lCB
t . Thus, from the bank’s perspective, granting a

loan to the ECB yields less than borrowing from the ECB, which is, of course, intentionally. For the
risk-free interest rate, dCB

t > rt > lCB
t holds. Hence, in normal times, banks are not interested in holding

central bank reserves above the minimum (LCB
t > 0) and only turn to central bank liabilities if they have

a refinancing problem on the interbank market.

With the TLTRO III program in combination with the exemption scheme until September 2022 (that is,
lCB
t = 0% for six times the minimum reserve requirement and the ECB DFR (−0.5%) for the rest of

the CB assets in 2020) and the fixed TLTRO III rate at ECB DFR−0.5% (that is, dCB
t = −1% in 2020)

for the 3-year duration of the TLTRO III program. Hence, the spreads reversed for a three-year period:
dCB

t < rt < lCB
t , even under a rising ECB DFR after September 2022. This immediately explains why

banks held reserves above the minimum reserve requirements at the central bank. It is optimal for them,
and the central bank offers a “carry trade”: Take TLTRO III and leave it as central bank reserve. As a
side note, there are no capital requirements for central bank assets, which makes CB assets even more
attractive.

4. Data and descriptive statistics

The empirical analysis is based on two unique proprietary datasets collected by the ECB, based on Guide-
line ECB/2016/45 amending Guideline ECB/2014/15 on monetary and financial statistics.12

The first dataset, Individual Balance Sheet Items (IBSI), collects information on balance sheet items. The
IBSI dataset includes monthly observations of approximately 200 banks on balance sheet indicators, both
on the asset and liability side between July 2007 and December 2021, yielding a total of T = 174 time
periods. The panel is unbalanced. It contains unconsolidated data (i.e., outstanding amounts/stocks at the
end of the month) for a representative sample from euro area countries. The sample covers, on average,
around 70% of euro area banks’ main assets.

The IBSI dataset is complemented with monthly bank-level data for new business volumes on deposits
and loans as well as borrowing and lending rates to non-financial corporations (NFC) and to households
(HH) with different maturities, loan sizes and loan purposes for the same time period. This is the second
dataset used, Individual Monetary and Financial Institution Interest Rates (IMIR). The calculated bank-
level lending and deposit rates to NFCs and HHs correspond to the interest income/expenses weighted
by volume outstanding in a given month.

For calculating the bank-specific weighted interest rates, we only consider HH deposits with agreed
maturity, but exclude deposits that are overnight and redeemable at notice due to the lack of data on new
business volumes at these maturities. For NFC deposits, we exclude overnight deposits for the same
reason. Alternatively, for calculating banks’ weighted lending rates to HH, we include information on

12See https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016O0045, and ECB (2019).
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consumption loans, loans for house purchases, or loans to HH for other purposes with different maturities,
while loans to NFCs include loans other than overdrafts split into those up to 1 million EUR and above 1
million EUR with different maturities.

It is possible that omitting HH deposits, which are redeemable at notice, from the sample leads to higher
average deposit rates, especially in the pre-crisis period, compared to those that prevailed in practice.
However, in particular, after the global financial crisis, all deposit rates decreased steadily and slowly
approached the zero lower bound, while the interest rate difference between the different types of deposits
with different maturities dropped. We use the 3-month Euribor (via Macrobond) because it is a good
indicator of the ECB’s current monetary policy stance, and it is widely used as a reference rate for many
financial products.

We use the main refinancing operations (MRO) rate as the central bank refinancing rate until May 2014.
Then we switch to the most favorable TLTRO rate. We assume that ex-ante banks expect to fulfill the
lending criteria.

To control for the other unconventional monetary policy measures on interest rate spreads and on lending
and deposit rates, we add time dummies for all purchase programs. Given that the APP consisted of
four different programs, namely the third covered bond purchase program (CBPP3), the asset-backed
securities purchase program (ABSPP), the so-called public sector purchase program (PSPP), and the
purchase of corporate sector bonds (CSPP), we add four dummies, which take the value 1 after their first
implementation and 0 before. A fifth dummy is added for the PEPP from March 2020. Finally, due to the
overlap of several programs, we use one dummy variable for the existence of asset purchase programs.13

To limit the impact of outliers from distorting the empirical results, we apply a two-stage cleaning algo-
rithm to some selected variables by removing possible reporting errors in the regulatory reporting system.
First, all negative values for shares and other equity, total main assets, lending, deposits, and sovereign
holdings are eliminated. We also remove zero values of sovereign bond holdings, total main assets, and
capital and reserves.14 Second, we remove extreme values from some constructed variables. An observa-
tion is regarded as an outlier if the interquartile range exceeds 2.8 times the distance between the median
and the boundaries defined by the 2.5% and 97.5% percentiles.

13For details on the APP, see https://www.ecb.europa.eu/mopo/implement/app and https://www.ecb.europa.
eu/mopo/implement/pepp for the PEPP. To be precise, CBPP3 and ABSPP were implemented before the official start of
PSPP. For a recent discussion, see also Benigno et al. (2022) or Hartmann and Smets (2018).

14According to ECB (2019), the item capital and reserves on the liabilities side of the balance sheet includes issued equity,
profits and losses, and various provisions.
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Table 2: Stylized bank balance sheet

Assets Liabilities
Consumption loans HH deposits

Mortgage loans
NFC loans NFC deposits

Assets securities Liab. securities
Assets CB Liabilities CB

Equity
Interbank assets Interbank Liabilities

This table shows a simplified balance sheet of a bank. Consumption loans refer to loans to households for consumption.
Mortgage loans refer to loans used for buying residential properties by households. NFC loans refer to loans granted to
non-financial corporations. Assets securities refer to securities on the asset side (e.g., bonds). Assets CB refers to loans
to the central bank (e.g., minimum reserve requirements). HH deposits refer to household deposits. NFC deposits refer to
deposits from non-financial corporations. Liab. securities refer to securities on the liability side of the balance sheet (e.g.,
covered bonds, market funding). Liabilities CB refers to liabilities to the central bank (e.g., TLTRO). Equity is defined
as capital and reserves on the liabilities side of the balance sheet includes issued equity, profits and losses and various
provisions.

The summary statistics of all included variables, as well as a detailed description of each variable, are
given in Table 3.
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Table 3: Summary statistics

Min. 1st Qu. Median Mean 3rd Qu. Max Data Cov.

Balance sheet indicators

HH deposits 0.00 233 3,850 13,512 13,857 270,804 82.59
NFC deposits 0.00 319 1,247 4,674 3,614 124,509 82.59
Liab. securities 0.00 0.00 839 10,959 8,135 439,415 74.19
Liabilities CB 0.00 30 1,502 4,863 4,862 127,399 32.42
Equity 0.44 589 1,667 5,037 4,858 104,978 82.15
NFC loans 0.00 926 3,915 10,329 10874 173,171 80.83
Mortgage loans 0.00 60 2,326 8,899 9,208 175,073 80.83
Consumption loans 0.00 153 751 2,413 2,706 34,725 80.83
Assets securities 0.00 509 3,491 10,981 12,049 182,600 82.59
Assets CB 0.01 117 489 3,499 2,579 144,782 55.61
Total assets 1.00 9,594 25,036 65,453 60,807 1,276,535 80.81

Interest rate statistics

DR NFC -1.67 0.13 0.73 1.25 1.88 7.51 65.26
DR HH -0.70 0.35 1.17 1.52 2.40 13.24 64.40
LR Mortgage HH 0.00 1.96 2.77 3.02 4.13 8.28 65.80
LR Consumption HH 0.00 2.78 4.08 4.40 5.46 20.77 67.77
LR NFC -0.25 2.03 2.89 3.14 3.98 17.33 70.34

Further variables

CB refinancing rate -1.00 0.10 0.15 0.34 1.00 3.75 89.80
3M-Euribor -0.58 -0.33 0.08 0.62 0.88 5.11 98.14
2-year gov bond yield -0.91 -0.44 0.09 0.70 1.38 20.10 67.68
10-year gov bond yield -0.70 0.59 1.75 2.26 3.66 16.14 69.91
Dummy neg. Euribor 0.00 0.00 0.00 0.46 1.00 1.00 98.14
Dummy neg. Euribor x Euribor -0.58 -0.33 0.00 -0.16 0.00 0.00 98.14
PSPP CSPP PEPP 0.00 0.00 0.00 0.41 1.00 1.00 98.14

Sources: ECB SDW, IBSI, IMIR, and Macrobond.
This table presents the minimum, first quartile, median, mean, third quartile, maximum, and data coverage for all
variables. Data coverage indicates the percentage of available observations, assuming the panel was balanced.
The data cover the period from July 2007 to December 2021 and are provided every month for 274 banks in
the euro area. HH deposits refer to household deposits. NFC deposits refer to deposits from non-financial
corporations. Liab. securities represent securities on the liability side of the balance sheet (e.g., covered bonds,
market funding.). Liabilities CB stands for liabilities to the central bank (e.g., TLTRO). Equity refers to capital
and reserves that include issued equity, profits and losses and various provisions. Consumption loans refer
to loans to households for consumption. Mortgage loans denote loans used for buying residential properties
by households. NFC loans stand for loans granted to non-financial corporations. Assets securities represent
securities on the asset side (e.g., bonds). Assets CB refers to loans to the central bank (e.g., minimum reserve
requirements). Total Assets denote the total assets of a bank. DR NFC represents the average deposit rate of
non-financial corporations. DR HH refers to the average deposit rate of households. LR Mortgage HH denotes
the average loan rate of mortgage loans to households. LR Consumption HH refers to the average loan rate of
consumption loans to households. LR NFC stands for the average loan rate of loans to non-financial corporations.
CB refinancing rate refers to the most favorable interest rate paid on TLTROs. 2-year gov bond yield denotes the
two-year zero coupon government bond yield, which is used as a proxy for the average yield for the securities
on the liability side. 10-year gov bond yield stands for the ten-year zero coupon government bond yield, which
is used as a proxy for the average yield for the securities on the asset side. Furthermore, we include dummy
variables for negative interest rates and asset purchase programs.

The developments of our dependent variables are shown in Figure 4 for assets and Figure 5 for liabilities.
The development of the interest rates is shown in Figure 6.
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Figure 4: Dependent Variables: Assets

Source: ECB SDW, IBSI, and IMIR. This figure shows the evolution of the monthly averages of all dependent variables. To make them
easier to compare, we calculated the ratios for each bank using total assets. The share of NFC loans refers to the share of non-financial
corporation loans. Share of Mortgage loans refers to the share of mortgage loans. The share of consumption loans refers to the share
of household consumption loans. Share of assets securities refers to the share of securities on the asset side. Share of CB Assets refers
to the share of central bank assets. Share Interbank EA Assets refer to the share of interbank loans granted to other euro area banks.

Figure 5: Dependent Variables: Liabilities

Source: ECB SDW, IBSI, and IMIR. This figure shows the evolution of the monthly averages of all dependent variables. To make
them easier to compare, we calculated the ratios for each bank using total assets. The share of HH deposits refers to the share of
household deposits. Share of NFC deposits refers to the share of non-financial corporation deposits. Share of liab. securities refers to
the share of securities on the liability side. Share of CB liabilities refers to the share of central bank liabilities. Share Interbank EA
Liabilities refer to the share of interbank market deposits from euro area banks.
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Figure 6: Predetermined Variables: Interest Rates

Source: ECB SDW, IBSI, and IMIR. This figure shows the evolution of the monthly averages of all predetermined variables. DR NFC
refers to the average deposit rate of non-financial corporations. DR HH refers to the average deposit rate of households. LR Mortgage
HH refers to the average lending rate of mortgage loans. LR Consumption HH refers to the average lending rate of household
consumption loans. LR NFC refers to the average lending rate of non-financial corporations. No bank in our sample reports its
interbank lending or deposit rates.

5. Econometric approach

The analytically derived policy function in Theorem 1 can be estimated by a PVAR model. We must make
a few simplifications to estimate the large number of parameters in equation (9). We assume rational
expectations for all interest rates and that every interest rate follows a mean reverting AR(1) process.
This allows us to summarize the large number of coefficients for each interest rate and its expectation for
the future in one coefficient for each interest rate.

With these assumptions, we can estimate equation (8) with a PVAR model:15

yi,t = µi + Ãyi,t−l + B̃xi,t + C̃si,t + εi,t, (11)

where yi,t is a 9 × 1 vector of endogenous variables from Table 4 for the ith bank at time t. yi,t−1 is a 9 × 1
vector of lagged endogenous variables of order one. Let xi,t be a k × 1 vector of predetermined variables

15PVAR models were introduced by Holtz-Eakin et al. (1988), who also introduced the first difference GMM estimator. We
apply the model of Sigmund and Ferstl (2021), who added the system GMM moment conditions (Blundell and Bond, 1998)
to PVAR models and allow exogenous and predetermined variables, similar to Roodman (2009b), who does it for dynamic
panel models.
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(see Table 4) that are potentially correlated with past errors. Let si,t ∈ R
n be an n × 1 vector of strictly

exogenous variables (see Table 4) that depend neither on εt nor on εt−s for s = 1, ...,T . The cross-section
i and the time section t are defined as i = 1, 2, ...,N and t = 1, 2, ...,T . Moreover, the disturbances εi,t are
independently and identically distributed (i.i.d.) for all i and t with E[εi,t] = 0 and Var[εi,t] = Σε . Σε is
a positive semidefinite matrix. We assume that Ã (m × m), B̃ (m × k) and C̃ (m × n) are the same for all
banks.

Our policy function estimations are not subject to the Lucas critique because holding and adjustment costs
are deep structural parameters reflecting the “technology”, “preferences”, or “costs” of the bank. All
reduced form parameters estimated with equation (11) are functions of them. Changes in the economic
environment (e.g., the central bank policies) are reflected in changes in the interest rates. Based on the
significance of the estimated coefficients, we are then able to test if the relevant structural parameters for
the presence of adjustment costs (φ2, θ2, κ2, ζ2 > 0) and no portfolio separation (δ > 0) are statistically
significantly different from zero. In particular, we have the following two propositions.

Proposition 1. Adjustment Costs: If the diagonal coefficients of Ã in equation (11) are statistically
significantly different from 0, then there is empirical evidence for adjustment costs (i.e., φ2, θ2, κ2, ζ2 > 0).

Proof. No adjustment costs would imply Case 1. One directly confirms that equation (6) gives the unique
solution of equation (A.2), proving claim (ii) of Theorem 1. This implies that the reduced form coeffi-
cients in the matrix Ã are all zero, i.e., Ã = 0, no lagged dependent variable influences the current
value. �

Proposition 2. No Portfolio Separation (δ > 0): If at least one of the off-diagonal coefficients of Ã are
statistically significantly different from zero, then there is empirical evidence for no portfolio separation.
Additionally, we must check the off-diagonal elements of B̃, e.g., if the NFC lending rate affects any
deposit volumes or “other” lending volumes.

Proof. We test if Case 2 or Case 3 is more likely to be the data generating process. Consider equa-
tion (A.9), under δ = 0, H3 is the identity matrix, H1 and H2 are diagonal matrices. This implies that
H2H−1

3 = H2 is diagonal, hence Ã in equation (11) should not have any statistically significant coefficients
in the off-diagonal. Also, H1 − H2 is a diagonal matrix, implying that B̃ in equation (11) should not have
any statistically significant coefficients in the off-diagonal. �

Based on the estimated matrices Ã, B̃, and C̃ it is possible to identify the holding and adjustment costs.
However, these lengthy calculations would only inform us on the holding and adjustment costs of the
average bank. We argue that this is less interesting than the empirical evidence for the presence of
adjustment costs and portfolio separation. To proxy the holding costs of each bank’s balance sheet items,
under the assumption that δ is small and the bank’s balance sheet is in long-run equilibrium, is simply a
transformation of equation (6).
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In theory, there are different methods to estimate equation (11) after removing the fixed effects (µi) by
applying the first differences or the forward orthogonal transformation,16

∆yi,t = Ã∆yi,t−l + B̃∆xi,t + C̃∆si,t + ∆εi,t .

In our estimations, ∆ refers to the forward orthogonal transformation.

We use the two-step system GMM estimator, to avoid the Nickell bias, the higher-order GMM bias
(Newey and Smith, 2004) and the well-known weak instrument problem (Blundell and Bond, 1998)
when only using the first difference GMM moment conditions, in the case of highly autocorrelated time
series. We also include predetermined variables to avoid further endogeneity issues, which is a key issue
when using bank-specific explanatory variables. At the same time, we reduce the number of possible
moment conditions by fixing a maximum lag length with Lmax < T and collapse the set of remaining
instruments (Mehrhoff, 2009; Roodman, 2009a; Sigmund and Ferstl, 2021).

16y⊥i,t+1 = ci,t(yi,t − 1/Ti,t
∑

s>t yi,s), where ci,t =
√

Ti,t/(Ti,t + 1). This transformation is suggested by Arellano and Bover
(1995) to minimize data losses due to data gaps. The first difference transformation exists for t ∈ {p+2, · · · ,T } and the forward
orthogonal transformation exists for t ∈ {p + 1, · · · ,T − 1}. We denote the set of indexes t, for which the transformation exists
by T∆.
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Table 4: Model specifications

Type Variable
y (endogenous) (1) log(HH deposits)

(2) log(NFC deposits)
(3) log(Liab. securities)
(4) log(Liabilities CB)
(5) log(NFC loans)
(6) log(Mortgage loans)
(7) log(Consumption loans)
(8) log(Assets securities)
(9) log(Assets CB)

x (predetermined) (1) DR NFC
(2) DR HH
(3) LR Mortgage HH
(4) LR Consumption HH
(5) LR NFC

s (exogenous) (1) CB refinancing rate
(2) 3M-Euribor
(3) 2-year gov bond yield
(4) 10-year gov. bond yield
(5) Dummy neg. Euribor
(6) Dummy neg. Euribor x Euribor
(3) PSPP CSPP PEPP

This table lists the variables by type as used in the different estimated model
specifications.
The summary statistics of these variables can be found in Table 3.
In accordance with Table 2, we have nine endogenous variables in the PVAR
model.
We treat all bank-specific interest rates as predetermined in the PVAR model
in equation (11), since they might depend on past shocks εi,t .
We assume that all other variables are exogenous.
In Appendix C, we add equity as an additional endogenous variable.

6. Simulation and estimation of the bank’s dynamic optimization model

In this section, we simulate three data sets generated by our model for Case 1, Case 2, and Case 3. This
simulation exercise has several goals. First, we want to analyze how banks react to the ever-improving
TLTRO conditions. Second, we want to compare the three cases. Third, we want to estimate the policy
functions and understand what estimated coefficients in Ã, B̃, and C̃ in equation (11) can be expected in
the three cases. In particular, we are interested in testing Proposition 1 and Proposition 2, knowing the
expected outcome.

To simulate data sets, we use the concept of approximate dynamic programming that has been introduced
to solve, find, or approximate the solution of infinite-horizon dynamic optimization problems (Powell,
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2007). There are many ideas on how to approach approximate dynamic programming. We proceed as
follows. The first-order conditions for all controls and the resource constraints are stacked for all periods
into a single-equation system, which is then solved using a standard Newton-Raphson method. The
complementary problem (i.e., potentially binding non-negativity constraints) can be handled by adding
the Min-Max approach as described in Miranda and Fackler (2004). Introducing unanticipated shocks
every period then allows us to generate a stochastic simulation (“extended path” approach by Fair and
Taylor, 1983).17

A simulation of the optimal behavior or the approximately optimal behavior over time might also help
reveal the shortcomings of the model. One shortcoming of the model by Elyasiani et al. (1995) is that it
does not include quadratic holding costs for bank liabilities and assets. After introducing the TLTRO III
program with the 60% of the total asset rule under certain parameter configurations, a bank would just
enhance its balance sheet with interbank assets and liabilities to be able to increase its TLTROs without
breaching the 60% rule. Such a behavior can neither be observed in our data set nor is realistic. At a
certain point, interbank liabilities have to be secured, and therefore cause holding costs. To address this,
we add two complementary constraints in our simulations: DCB

t ≤ 0.6 · Lt and Ft ∈
[
−F, F

]
.

We simulate exogenous interest rate shocks that replicate the observed development between the end of
2008 and 2021 in a stylized way. This period is normalized to 100 periods. Inspired by the data, the
shock is modeled as a piece wise-linear decline in interest rates: 50% in the first 10 periods and 50%
in the following 80 months, before leveling out. Starting from the annualized rates l0 = 5.3, d0 = 2.3,
r0 = 3.4, dCB

0 = 4.1 and lCB
0 = 2.1, the assumed shock looks as follows. For loan, deposit and interbank

rates (lt, dt, and rt), the total decrease is set at 2.5 percentage points, while the fall in the rate for deposits
from the central bank (dCB

t ) was much stronger and is therefore set at 5.5 percentage points. In contrast,
the loan rate vis-Ã -vis the central bank (lCB

t ) has seen a smaller decline and is set to 1 percentage point.

This is an important step, since in the last periods of our simulation we have dCB
t < lCB

t . To use the
simulation results for vector autoregression estimations, we add noise to the market rates lt, dt and rt in
the form of an additive AR(1)-process term ut = 0.7ut−1 + εu

t with εu ∼ N(0, 0.1). The simulated path
of interest rates is shown in the upper panel of Figure 7. Our simulation setup allows for expectations of
future interest rate developments. If banks can anticipate changes in advance, then they will start their
adjustment earlier.

Early anticipation of TLTRO programs could be possible, but the effects on banks’ balance sheets should
be limited before the starting date of the program. For example, banks do not need to take up CB
liabilities under TLTRO I conditions to be able to take up CB liabilities under TLTRO II conditions at
a later stage. Only the date decides which conditions apply. Indeed, when there were changes in the
TLTRO conditions, banks paid back all CB liabilities under the old conditions and took up the requested
CB liabilities when the new conditions were in place. Hence, any anticipatory effects must be reflected in
other assets or liabilities. However, an expansion of the credit supply requires refinancing through other

17The described method is implemented in a self-written R-package (‘Rmod’) that can efficiently solve a wide range of
dynamic, linear and non-linear, rational expectation models.
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liabilities. The reduction and build-up of these liabilities cause adjustment costs, which would slow down
the original lending.

We simulate the described interest rate shocks for Case 1, Case 2, and Case 3. The following set of
parameters is chosen for all cases. We set φ1 = θ1 = ζ1 = κ1 = 0.01486 such that D0 is normalized
to 100. For Case 2 and Case 3, the adjustment cost parameters for regular deposits and loans are set
to φ2 = θ2 = 0.1, while half the value is used for deposits from and loans to the central bank, i.e.,
ζ2 = κ2 = 0.05. The parameter δ is set to φ1 · 10−1 (Case 3) or 0 (Case 2). In Case 1 with no adjustment
costs, we simply set φ2 = θ2 = ζ2 = κ2 = 0. Further, the (annualized) discount factor, the reserve rate,
and the bounds on interbank volumes are set to β = 0.97, ρ = 0.01, F = 0.1 × D0 and F = 0.5 × D0.

Next, we discuss how, according to our model, banks react to the introduction of TLTROs and a lower
rate for deposits at the central bank. We study the responses for Case 1, Case 2, and Case 3.

Before analyzing the simulation results, recall that the optimal portfolio decision always depends on the
relative change of an interest rate relative to the interbank rate rt (Theorem 1). Hence, while the simulated
interest rate paths in Figure 7 reflect the historic development, a normalized shock that is introduced only
relative to rt, i.e., d̃CB

t = dCB
t − (rt − r0), etc., would result in exactly the same portfolio and volume

choices by the bank.18 As we assume the same trends for dt, lt and rt, this means that the volume changes
in Figure 7 can be interpreted as the isolated consequence of central bank policy, i.e., the change in the
relative difference of dCB

t and lCB
t to rt.

18In contrast to the optimal portfolio choice the resulting profits are not invariant to such a shock normalization.
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Figure 7: Simulation: No Adjustment Costs, Portfolio Separation and No Portfolio Separation
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The figure shows three simulations of the optimization problem in equation (4). We only include one type of deposits,
one type of loans, interbank deposits, interbank loans, and central bank liabilities. In the top graph, we illustrate the
interest rate trends to reflect real-world scenarios. For the first 25 periods, the central bank deposit rate is 1.5%. For
the next 25 periods, it decreases to 1%. For the next 25 periods, it decreases to 0%. For the last 25 periods, it is −1%.
The three bottom graphs show the volumes of loans, deposits, and central bank deposits over 100 time periods. The
left-bottom graph shows the evolution of volumes for Case 1. The middle-bottom graph presents Case 2. The graph
on the right-bottom reflects the developments for Case 3.

Figure 7 reveals that the central bank intervention has the same effect in all three cases in qualitative
terms. Banks heavily use cheaper deposits from the central bank through TLTROs. This slightly boosts
the loan supply, though not one-for-one, as central bank deposits are also used to replace other deposits.
In addition, the relative increase in attractiveness of lending to the central bank results in central bank
loans voluntarily exceeding the reserve requirement (LCB

t > 0).

The differences between the three cases are more subtle (lower panels in Figure 7). In the absence of
adjustment costs, banks restructure their portfolio more aggressively in response to shocks. If holding
costs for interbank (net) loans are present (Case 3), then banks will be more reluctant to use interbank
loans, which results in a slightly lower volume of granted regular loans.

Next, we estimate the policy function with a vector autoregression (VAR) model for each of the three
cases, since we only simulate data for one representative bank. In Table 5, we present the results for
Case 1. Given the policy functions in equation (6), we would expect small and insignificant lagged
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coefficients of the dependent variables (Proposition 1). Since the parameters in our simulation are such
that the CB deposits are becoming more attractive over time, we could find some positive dependent
variables lagged in column “log(CD deposits)”. The interbank market interest rate rt should be significant
in all columns, while only the asset or liability interest rate should be significant in the corresponding
equation (e.g., the deposit rate d should be significant in the column “log(deposit)”).

Table 5: VAR Model for Case 1

log(loans) log(deposits) log(CB deposits) log(CB assets)

log(loans)(-1) 0.0845∗∗ −0.1731∗ −0.3350∗∗ 1.9683∗∗

(0.0388) (0.0980) (0.1449) (0.8101)
log(deposits)(-1) 0.0116 0.0852∗ −0.0883 0.2066

(0.0198) (0.0500) (0.0740) (0.4136)
log(CB deposits)(-1) −0.0279∗∗ −0.0464∗ 0.6639∗∗∗ −0.3726

(0.0107) (0.0271) (0.0401) (0.2242)
log(CB assets)(-1) 0.0045 0.0006 −0.0178 0.6511∗∗∗

(0.0037) (0.0093) (0.0138) (0.0772)
intercept 3.5025∗∗∗ 4.2161∗∗∗ 2.6796∗∗∗ −5.2011

(0.2031) (0.5137) (0.7595) (4.2457)
l 0.3877∗∗∗ 0.0923∗∗ 0.2398∗∗∗ −0.5595

(0.0166) (0.0419) (0.0619) (0.3462)
d −0.0489∗∗∗ −0.6390∗∗∗ −0.0048 0.2527

(0.0164) (0.0415) (0.0613) (0.3429)
dCB −0.1679∗∗∗ 0.0370 −0.2521∗∗∗ 0.4351

(0.0170) (0.0429) (0.0634) (0.3543)
r −0.1451∗∗∗ 0.4641∗∗∗ 0.0292 −1.1990∗∗∗

(0.0184) (0.0466) (0.0689) (0.3851)

Number of Observations 100 100 100 100

Source: Own calculations. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
We use the simulated dataset with no adjustment costs (Case 1).
We estimate a vector autoregression model for this dataset to make it comparable to the other tables
in this subsection.
The first dependent variable is log(loans) and refers to the logarithm of loans. In our simulation
study, these loans would be the sum of consumption and NFC loans in Table 2, which count towards
the TLTRO programs.
The second dependent variable is log(deposits). In our simulation study, these deposits are the sum
of household and NFC deposits in Table 2.
The third dependent variable is log(CB deposits). The fourth dependent variable is log(CB assets).
For each dependent variable, we include the corresponding interest rate: l refers to the lending rate.
d refers to the deposit rate. dCB refers to the TLTRO interest rate. r refers to the interbank rate. We
cannot include the lCB (e.g., the ECB DFR), since it is perfectly collinear with the dCB.

According to Proposition 1, we expect highly significant lagged dependent variables in the corresponding
equations (e.g., the coefficient of “log(loans)(-1)” in column “log(loans)”) for Case 2. This can be clearly
seen in Table 6.
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Table 6: VAR Model for Case 2

log(loans) log(deposits) log(CB deposits) log(CB assets)

log(loans)(-1) 0.7176∗∗∗ 0.0135 −0.2164∗∗ 0.8461
(0.0225) (0.0449) (0.1040) (0.7643)

log(deposits)(-1) 0.0249∗∗ 0.6814∗∗∗ −0.0750 0.4409
(0.0116) (0.0232) (0.0537) (0.3944)

log(CB deposits)(-1) −0.0006 −0.0151∗∗∗ 0.7055∗∗∗ −0.0586
(0.0028) (0.0056) (0.0130) (0.0952)

log(CB Assets)(-1) 0.0045∗∗∗ −0.0019 −0.0165∗∗∗ 0.9185∗∗∗

(0.0013) (0.0026) (0.0060) (0.0437)
intercept 1.0696∗∗∗ 1.2205∗∗∗ 2.4211∗∗∗ −4.1590

(0.1289) (0.2568) (0.5953) (4.3750)
l 0.0809∗∗∗ 0.0082 0.0579∗∗∗ −0.2375∗

(0.0041) (0.0082) (0.0190) (0.1395)
d −0.0022 −0.1460∗∗∗ −0.0075 0.1000

(0.0042) (0.0084) (0.0195) (0.1430)
dCB −0.0344∗∗∗ 0.0102 −0.1591∗∗∗ 0.2753

(0.0053) (0.0106) (0.0246) (0.1807)
r −0.0405∗∗∗ 0.1168∗∗∗ 0.0548∗∗ −0.5698∗∗∗

(0.0049) (0.0098) (0.0227) (0.1666)

Number of Observations 100 100 100 100

Source: Own calculations. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
We use the simulated dataset with adjustment costs and portfolio separation (Case 2).
We estimate a vector autoregression model for this dataset to make it comparable to the other
tables in this subsection.
The first dependent variable is log(loans) and refers to the logarithm of loans. In our simulation
study, these loans would be the sum of consumption and NFC loans in Table 2, which count
towards the TLTRO programs.
The second dependent variable is log(deposits). In our simulation study, these deposits are the sum
of household and NFC deposits in Table 2.
The third dependent variable is log(CB deposits). The fourth dependent variable is log(CB assets).
For each dependent variable, we include the corresponding interest rate: l refers to the lending
rate. d refers to the deposit rate. dCB refers to the TLTRO interest rate. r refers to the interbank
rate. We cannot include the lCB (e.g., the ECB DFR), since it is perfectly collinear with the dCB.

According to Proposition 1 and Proposition 2 in equation (8), we expect highly significant lagged de-
pendent variables in all equations for Case 3, e.g., the coefficient of “log(loans)(-1)” in all columns in
Table 7. Moreover, we expect highly significant interest rates in all equations.
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Table 7: VAR Model for Case 3

log(loans) log(deposits) log(CB deposits) log(CB assets)

log(loans)(-1) 0.6404∗∗∗ 0.0084 −0.1293 1.4328∗∗

(0.0096) (0.0678) (0.1071) (0.6544)
log(deposits)(-1) 0.0222∗∗∗ 0.8982∗∗∗ −0.1582∗∗∗ −0.6816∗∗

(0.0039) (0.0274) (0.0433) (0.2646)
log(CB deposits)(-1) 0.0050∗∗∗ 0.0079 0.6971∗∗∗ −0.1547∗

(0.0011) (0.0081) (0.0128) (0.0783)
log(CB Assets)(-1) −0.0038∗∗∗ 0.0100∗∗∗ −0.0076∗ 1.0052∗∗∗

(0.0004) (0.0029) (0.0045) (0.0277)
intercept 1.4440∗∗∗ 0.2527 2.3406∗∗∗ −2.5790

(0.0415) (0.2946) (0.4654) (2.8445)
l 0.0713∗∗∗ 0.0371∗∗∗ 0.0740∗∗∗ −0.1757∗∗

(0.0012) (0.0088) (0.0140) (0.0854)
d −0.0232∗∗∗ −0.0918∗∗∗ 0.0277∗∗ −0.2250∗∗∗

(0.0012) (0.0087) (0.0137) (0.0839)
dCB −0.0517∗∗∗ 0.0445∗∗∗ −0.1524∗∗∗ 0.3963∗∗∗

(0.0019) (0.0136) (0.0214) (0.1311)
r −0.0065∗∗∗ −0.0062 0.0281∗ −0.1990∗∗

(0.0014) (0.0100) (0.0159) (0.0970)

Number of Observations 100 100 100 100

Source: Own calculations. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
We use the simulated dataset with adjustment costs and no portfolio separation (Case 3).
We estimate a vector autoregression model for this dataset to make in comparable to the other
tables in this subsection.
The first dependent variable is log(loans) and refers to the logarithm of loans. In our simulation
study, these loans would be the sum of consumption and NFC loans in Table 2, which count
towards the TLTRO programs.
The second dependent variable is log(deposits). In our simulation study, these deposits are the sum
of household and NFC deposits in Table 2.
The third dependent variable is log(CB deposits). The fourth dependent variable is log(CB assets).
For each dependent variable, we include the corresponding interest rate: l refers to the lending
rate. d refers to the deposit rate. dCB refers to the TLTRO interest rate. r refers to the interbank
rate. We cannot include the lCB (e.g., the ECB DFR), since it is perfectly collinear with the dCB.

7. Estimation results with euro area bank data

In this section, we present the estimation results for the policy functions in equation (8) for the data set
described in Section 4. We estimate the PVAR model with the specification described in Table 4 with
nine endogenous variables and present the results in two tables. In Table 8, we present the four equations
for the liabilities, while Table 9 showcases the five equations for the assets.

In Table 8, we once again observe compelling evidence of adjustment costs for liabilities, as indicated by
the positive and statistically significant coefficients of the own lagged dependent variable (see Proposi-
tion 1). Moreover, in some equations, we also estimate statistically significant coefficients for the lags of
other endogenous variables. We interpret this as evidence for adjustment costs and no portfolio separation
(see Proposition 2). This is further supported by the fact that many interest rates from other endogenous
variables are significant as well. For example, DR NFC is statistically significant in the log(HH deposit)
equation.
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In Table 9, there is also strong evidence for the existence of adjustment costs and no portfolio separation
for the assets equations. The arguments are similar to those described for the liabilities.

With our PVAR model, we can answer which optimal strategies the average bank follows after the in-
troduction of TLTRO. We therefore go beyond the ideas of Castillo Lozoya et al. (2022), who identify
four strategies, NFC and HH lending, holding reserves at the central bank, buying government securities,
and substituting for market funding. Based on our results, we identify a fifth strategy, granting interbank
market loans, which is also in line with the developments shown in Figure 2, especially under TLTRO I
and TLTRO II.

Since we eliminated the net interbank position in solving the theoretical model in Section 3.1, we note
that banks also increase their share of interbank assets in their balance sheet to distribute some funds to
other banks, as shown in Figure 4. As mentioned in the data section, we analyze large European banks at
the unconsolidated level. This means that the potential effects of bidder groups for TLTROs are covered
by the interbank market liabilities and assets.

The initial impact of TLTRO uptake, which expands the bank’s balance sheet by an increase in CB
liabilities and in CB assets, banks, then, decide how to rebalance their assets and liabilities. These
rebalancing can be seen by looking at the coefficients of “log(CB deposits)(-1)” and “log(CB assets)(-1)”
in Table 8 and Table 9. In Table 9, the coefficients of “log(CB assets)(-1)” show how banks optimally
distribute rebalance their funds. The majority of them (56%) is kept as CB assets. Only around 7% flows
into NFC loans, followed by 4% to household consumption loans, the rest flows to interbank market
loans, which is the residual quantity.

One could argue that these LCB
t (central bank assets above the minimum reserve requirements) created

by the initial TLTRO update have to stay on any bank’s balance sheet, independently of its usage by
the initial up-taking bank. However, this is not the case. Suppose that bank i takes up TLTRO and
therefore simultaneously increases LCB

t and DCB
t . Then, i grants a loan to a non-financial corporation that

has a deposit account at a bank j. Then, the minimum reserve requirement for the bank j increases and
therefore the excess reserves in the system should be slowly absorbed by the increasing minimum reserve
requirements in the system. Next bank j grants a loan to another non-financial corporation which has a
deposit account at bank k and after n → ∞ steps, the excess reserves in the system converge to zero if
banks use their CB assets to grant loans.

Our structural model can be used for various counterfactual analyses. The most interesting counterfactual
analysis is about the ever improving TLTRO conditions and the discussion in Section 3.2. What would
have happened if the ECB had not set dCB

t < lCB
t and had not allowed a risk-free carry trade under

TLTRO III? The answer can be calculated by setting the CB refinancing rate to the MRO rate, but can
already be seen by analyzing the data under TLTRO I and TLTRO II.

Under TLTRO I and II, most banks were not interested in participating, as can be seen in Figure 5. The
average share of CB liabilities was around 5% between 2007 and 2020. At the same time, there was no
breakdown in loan supply. Under TLTRO III, there was a massive increase in demand for CB liabilities
and also a massive increase in the supply of CB assets. Banks understood the potential of the carry trade
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by just keeping the lending growth-benchmark. All of these effects can be seen in Figure 4, Figure 5 and
are captured by the estimated coefficients in Table 8 and Table 9.

Table 8: PVAR: Balance Sheet Liabilities

log(HH deposits) log(NFC deposits) log(liab. securities) log(CB deposits)

log(HH deposits) (-1) 0.5506∗∗∗ 0.2080∗∗∗ −0.0861 0.0513
(0.0505) (0.0739) (0.0526) (0.0748)

log(NFC deposits) (-1) 0.3228∗∗∗ 0.3943∗∗∗ −0.0244 0.1261∗∗

(0.0645) (0.1081) (0.0530) (0.0530)
log(liab. securities) (-1) 0.1319∗∗∗ −0.0140 0.9011∗∗∗ −0.0843

(0.0480) (0.0321) (0.0351) (0.0597)
log(CB deposits)(-1) 0.0179∗∗ −0.0046 −0.0128∗∗ 0.8728∗∗∗

(0.0086) (0.0091) (0.0063) (0.0242)
log(HH Con. Loans) (-1) 0.0481 0.0419 0.0877 0.1090

(0.0678) (0.1058) (0.0595) (0.1050)
log(HH Mortgage loans) (-1) 0.0700 −0.0747 0.1091∗∗ −0.0639

(0.0575) (0.0708) (0.0521) (0.0908)
log(NFC loans) (-1) 0.0904∗ 0.2663∗∗∗ 0.1821∗∗ −0.0381

(0.0545) (0.0607) (0.0839) (0.0787)
log(assets securities) (-1) −0.0610 0.1830∗∗ −0.2092∗∗∗ 0.0252

(0.0528) (0.0715) (0.0514) (0.0545)
log(CB assets) (-1) −0.0277 −0.0163 0.0106 −0.0185

(0.0279) (0.0218) (0.0278) (0.0312)

DR NFC −0.3007∗∗∗ −0.0285 0.1949∗∗∗ 0.2099∗∗∗

(0.0710) (0.0742) (0.0651) (0.0714)
DR HH −0.2119∗∗∗ −0.0349 −0.0091 0.0785

(0.0591) (0.0688) (0.0753) (0.0682)
LR Consumption HH 0.0197 0.0017 0.0051 −0.0272

(0.0221) (0.0189) (0.0236) (0.0334)
LR Mortgage HH −0.0339 −0.0889∗ 0.0743 −0.1288∗

(0.0366) (0.0519) (0.0467) (0.0745)
LR NFC 0.0306 0.0479 −0.0542 −0.0891

(0.0384) (0.0561) (0.0575) (0.0549)

CB refinancing rate −0.0641 −0.0361 0.0261 −0.1246
(0.0412) (0.0460) (0.0465) (0.0819)

Euribor 0.0692 0.0404 −0.0386 0.0401
(0.0460) (0.0604) (0.0519) (0.0590)

2-year gov bond yield 0.1609∗∗∗ 0.0114 −0.0665 0.0228
(0.0510) (0.0481) (0.0427) (0.0527)

10-year gov bond yield 0.0697∗∗ −0.0827∗∗∗ −0.0204 0.0397
(0.0343) (0.0307) (0.0292) (0.0460)

Dummy neg. Euribor −0.1488∗∗∗ −0.1036∗∗ 0.0693 0.1187
(0.0441) (0.0444) (0.0713) (0.1053)

Dummy neg. Euribor x Euribor −0.0475∗∗ 0.0031 0.0386 −0.0932
(0.0234) (0.0332) (0.0406) (0.0634)

PSPP CSPP PEPP −0.1296∗∗∗ −0.0804 0.0445 −0.0351
(0.0444) (0.0643) (0.0711) (0.0688)

const 0.0204∗∗∗ 0.0152 0.0035 −0.0143
(0.0068) (0.0109) (0.0051) (0.0105)

Number of Observations 11, 493 11, 493 11, 493 11, 493
Number of Groups 140 140 140 140
Obs per group: min 4 4 4 4
avg 82.10 82.10 82.10 82.10
max 148 148 148 148
Hansen test of overid: statistics: 98.34 98.34 98.34 98.34
nof para: 729 729 729 729
p-value: 1.00 1.00 1.00 1.00
RMSE 0.10 0.05 0.09 1.24

Source. IMIR. IBSI. Own calculations.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1. We apply the two-step system GMM estimator by Blundell and Bond (1998) with
Windmeijer corrected standard errors (Windmeijer, 2005). All models are estimated by Sigmund and Ferstl (2021).
The dependent variable is log(HH deposits) in the first column. Log(HH deposits) refers to the logarithm of household deposits.
The dependent variable is log(NFC deposits) in the second column. Log(NFC deposits) refers to the logarithm of non-financial
corporate deposits.
The dependent variable is log(CB deposits) in the third column. Log(CB deposits) refers to logarithm of central bank deposits.
The dependent variable is log(liab. securities) in the fourth column. Log(liab. securities) refers to logarithm of securities on
the liability side.
For each dependent variable on the liability side, we include the corresponding interest rate: DR HH refers to the refers to the
average deposit rate of households. DR NFC refers to the average deposit rate of non-financial corporations. 2-year gov bond
yield refers to the two-year zero coupon government bond yield and should approximate the bond yield of securities on the
liability side. CB refinancing rate refers to the most favorable interest rate paid on TLTROs.
For each dependent variable on the asset side, we include the corresponding interest rate: LR Consumption HH refers to the
refers to the average lending rate of household consumption loans. LR Mortgage HH refers to the average lending rate of
mortgage loans. LR NFC refers to the average lending rate of non-financial corporations. 10-year gov bond yield refers to the
ten-year zero coupon government bond yield and should approximate the bond yield of securities on the asset side. ECB DFR
defines the interest banks receive for depositing money with the central bank overnight.
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Table 9: PVAR: Balance Sheet Assets

log(HH Con. Loans) log(HH Mortgage loans) log(NFC loans) log(assets securities) log(CB assets)

log(HH deposits) (-1) −0.0386 −0.0595 −0.0179 0.1142∗∗ 0.0685
(0.0532) (0.0555) (0.0418) (0.0548) (0.0986)

log(NFC deposits) (-1) 0.2665∗∗∗ 0.1567∗∗∗ 0.2656∗∗∗ −0.0424 0.1184∗∗

(0.0735) (0.0313) (0.0512) (0.0510) (0.0540)
log(liab. securities) (-1) 0.0314 0.0531 −0.0133 −0.0406∗ 0.0470

(0.0488) (0.0326) (0.0342) (0.0223) (0.1087)
log(CB deposits)(-1) −0.0052 −0.0060 0.0327∗∗∗ −0.0039 −0.0353

(0.0086) (0.0082) (0.0091) (0.0102) (0.0245)
log(HH Con. Loans) (-1) 0.4059∗∗∗ 0.2728∗∗∗ 0.0947∗∗ 0.2678∗∗∗ 0.0093

(0.0544) (0.0381) (0.0433) (0.0403) (0.0597)
log(HH Mortgage loans) (-1) 0.2649∗∗∗ 0.6278∗∗∗ 0.1866∗∗∗ −0.0294 0.1234

(0.0673) (0.0584) (0.0542) (0.0611) (0.0931)
log(NFC loans) (-1) 0.0009 0.1745∗∗∗ 0.3523∗∗∗ 0.0730 0.0643

(0.0375) (0.0362) (0.0462) (0.0633) (0.1083)
log(assets securities) (-1) 0.0583 −0.1138∗ 0.0226 0.6325∗∗∗ −0.0269

(0.0719) (0.0614) (0.0504) (0.0429) (0.0810)
log(CB assets) (-1) 0.0347 −0.0402 0.0740∗∗∗ −0.0077 0.5640∗∗∗

(0.0286) (0.0478) (0.0275) (0.0288) (0.0787)

DR NFC 0.0025 −0.1649∗∗∗ −0.1479∗∗∗ 0.2135∗∗∗ 0.2100∗∗

(0.0568) (0.0444) (0.0487) (0.0442) (0.1028)
DR HH 0.0322 −0.0002 0.0633 0.0847 0.0507

(0.0589) (0.0454) (0.0678) (0.0695) (0.1309)
LR Consumption HH 0.0008 0.0198 −0.0007 −0.0257 0.0533

(0.0268) (0.0281) (0.0200) (0.0244) (0.0698)
LR Mortgage HH −0.0709 −0.0315 0.2366∗∗∗ −0.0079 −0.1582

(0.0646) (0.0517) (0.0481) (0.0468) (0.1274)
LR NFC −0.1493∗∗∗ −0.0392 −0.0015 0.1216∗∗∗ −0.0875

(0.0253) (0.0380) (0.0468) (0.0406) (0.1196)

CB refinancing rate 0.0778∗ −0.0220 0.0092 0.1081∗∗ −0.2788∗∗∗

(0.0441) (0.0471) (0.0364) (0.0463) (0.0917)
Euribor 0.1023∗∗∗ −0.0101 0.0100 −0.1294∗∗∗ 0.0581

(0.0340) (0.0372) (0.0332) (0.0365) (0.0875)
2-year gov bond yield 0.0367 0.0374 0.0043 −0.2283∗∗∗ 0.1405

(0.0372) (0.0392) (0.0320) (0.0291) (0.0874)
10-year gov bond yield 0.0942∗∗ 0.0697∗∗ −0.0299 −0.0687∗ −0.1983∗∗∗

(0.0375) (0.0330) (0.0296) (0.0394) (0.0592)

Dummy neg. Euribor −0.0876∗∗ −0.0046 −0.1279∗∗∗ 0.1219∗∗∗ 0.1012
(0.0342) (0.0285) (0.0234) (0.0323) (0.0796)

Dummy neg. Euribor x Euribor 0.0065 −0.0043 0.0351 0.0890∗∗∗ −0.1926∗∗∗

(0.0292) (0.0246) (0.0234) (0.0252) (0.0455)
PSPP CSPP PEPP −0.0380 0.0842∗∗∗ 0.0785∗∗ 0.0359 0.1147∗

(0.0384) (0.0317) (0.0381) (0.0433) (0.0599)
const −0.0057 0.0247∗∗∗ 0.0213∗∗∗ 0.0170∗∗∗ 0.0127∗

(0.0065) (0.0045) (0.0051) (0.0056) (0.0072)

Bank fixed effects yes yes yes yes yes

Number of Observations 11, 493 11, 493 11, 493 11, 493 11493
Number of Groups 140 140 140 140 140
Obs per group: min 4 4 4 4 4
avg 82.10 82.10 82.10 82.10 82.10
max 148 148 148 148 148
Hansen test of overid: statistics: 98.34 98.34 98.34 98.34 98.34
nof para: 729 729 729 729 729
p-value: 1.00 1.00 1.00 1.00 1.00
RMSE 0.07 0.06 0.09 0.07 1.00

Source. IMIR. IBSI. Own calculations.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1. We apply the two-step system GMM estimator by Blundell and Bond (1998) with Windmeijer corrected standard errors
(Windmeijer, 2005). All models are estimated by Sigmund and Ferstl (2021).
The dependent variable is log(HH Con. Loans) in the first column. Log(HH Con. Loans) refers to the logarithm of consumption loans.
The dependent variable is log(HH Mortgage loans) in the second column. Log(HH Mortgage loans) refers to the logarithm of household mortgage loans.
The dependent variable is log(NFC loans) in the third column. Log(NFC loans) refers to logarithm of non-financial corporate loans.
The dependent variable is log(CB assets) in the fourth column. Log(CB assets) refers to logarithm of central bank assets.
The dependent variable is log(assets securities) in the fourth column. Log(assets securities) refers to logarithm of securities on the asset side.
For each dependent variable on the liability side, we include the corresponding interest rate: DR HH refers to the refers to the average deposit rate of
households. DR NFC refers to the average deposit rate of non-financial corporations. 2-year gov bond yield refers to the two-year zero coupon government
bond yield and should approximate the bond yield of securities on the liability side. CB refinancing rate refers to the most favorable interest rate paid on
TLTROs.
For each dependent variable on the asset side, we include the corresponding interest rate: LR Consumption HH refers to the refers to the average lending
rate of household consumption loans. LR Mortgage HH refers to the average lending rate of mortgage loans. LR NFC refers to the average lending rate
of non-financial corporations. 10-year gov bond yield refers to the ten-year zero coupon government bond yield and should approximate the bond yield of
securities on the asset side. ECB DFR defines the interest banks receive for depositing money with the central bank overnight.
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8. Summary and conclusions

We constructed a dynamic programming optimization model with the possibility of incorporating adjust-
ment costs and portfolio separation. The model was used to study how banks responded to the TLTROs
and their improving conditions. We theoretically derived three policy functions for no adjustment costs
(Case 1), adjustment costs and portfolio separation (Case 2), and adjustment costs and no portfolio sep-
aration (Case 3). We simulated data for each of the three cases and also estimated the resulting policy
functions. We then estimated the policy functions on real-world data of 200 large banks in the euro area
for the period 2007-2021.

Our estimation results allow us to evaluate the effect of the TLTROs on banks’ balance sheet structures.
We find strong evidence that banks face adjustment costs (Case 2 or Case 3) and also evidence that there is
no portfolio separation (Case 3). This implies, as seen in the data, that banks did not expand their balance
sheets in response to the TLTROs as intended by mechanically increasing the TLTROs on the liabilities
side and lending to consumers and NFCs on the assets side. Instead, there was a gradual rebalancing
of balance sheet positions over time, driven by adjustment costs and interest rate differentials. Banks
primarily expanded their central bank assets in response to steadily improving TLTRO conditions and
other unconventional monetary policy measures. The complex flows of funds approximated in our PVAR
model also imply that any reduced-form model, which analyzes, for instance, only the growth of loans to
NFCs, is likely to be incomplete.

The model also shows that it was rational for banks to take up central bank liabilities under TLTRO III and
keep them as central bank assets until the TLTRO III had to be repaid. Banks fulfilled only the minimum
requirements for lending to the private sector to obtain the most favorable TLTRO rate. This results in a
risk-free carry trade with an interest rate margin between 0.5% to 1% depending on how many assets a
bank holds at the CB in excess of the minimum reserve requirements during the exemption scheme.

Our model can be used to explain many empirical facts discussed in the literature. The results in Fricke
et al. (2024) show that the net worth of reserve-rich banks increases when the interest rate on reserves
increases sharply, directly resulting from the fact that the reversal of central bank policy rates remains,
offering a risk-free carry trade until the TLTRO III program is paid back.

Our model also provides an alternative “deposit channel” of monetary policy. Drechsler et al. (2017) show
that when the Fed funds rate increases, banks widen the spreads they charge on deposits, and deposits
flow out of the banking system. Deposit spreads increase more, and deposits flow out at a higher rate in
concentrated markets. In the euro area, banks have expanded their deposit spread (ECB DFR - deposit
rate) in the recent policy rate hike because their market power in the deposit market has increased, at least
in the short run, due to TLTRO III as an alternative cheap funding source.

We argue that there is a bank balance sheet channel of monetary policy. This channel depends not only
on the spreads between lending or deposit rates and the interbank rate, but also on the interest rates of
alternative or even new balance sheet items, as well as adjustment and holding costs. This demonstrates
that monetary policy measures cannot be analyzed in isolation, focusing solely on the bank lending
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channel or the bank deposit channel, as these channels are interconnected.

In summary, we find that the TLTROs did not have a particularly strong effect on lending to the real econ-
omy. On the other hand, we show theoretically and empirically that the TLTRO program was effective
with regard to banks’ profitability: banks take it and leave it.
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Appendix A. Proof of Theorem 1

We first show that the Euler equations (5) are sufficient conditions for an inner plan to solve the optimiza-
tion problem (4).

Let ξ̃ ∈ Ξ(X0) solve (5), and let ξ̂ ∈ Ξ(X0) be another plan. Write X̃t := ξ̃t[Z1, ...,Zt] and X̂t := ξ̂t[Z1, ...,Zt]
for (Z1, . . . ,Zt) ∈ Bt, and consider

V := lim
n→∞
E0

 n∑
t=0

βt
[
N

(
X̃t, X̃t+1,Zt+1

)
− N

(
X̂t, X̂t+1,Zt+1

)] ,
the expected difference in the discounted total return between the plans ξ̃ and ξ̂ along a sequence of
shocks {Zt ∈ B}t≥1. As N is concave, X̃0 = X̂0, and {X̃t} solves (5), we find

V ≥ lim
T→∞
E0

 T∑
t=0

βt
[
∇1N

(
X̃t, X̃t+1,Zt+1

) (
X̃t − X̂t

)
+ ∇2N

(
X̃t, X̃t+1,Zt+1

)
·
(
X̃t+1 − X̂t+1

)]
= lim

T→∞
E0

 T∑
t=0

βt
[
β∇1N

(
X̃t+1, X̃t+2,Zt+2

)
+ ∇2N

(
X̃t, X̃t+1,Zt+1

)]
·
(
X̃t+1 − X̂t+1

)
− lim

T→∞
E0

(
βT+1∇1N

(
X̃T+1, X̃T+2,ZT+2

)
·
(
X̃T+1 − X̂T+1

))
= lim

T→∞
E0

 T∑
t=0

βt
[
βEt+1∇1N

(
X̃t+1, X̃t+2,Zt+2

)
+ ∇2N

(
X̃t, X̃t+1,Zt+1

)]
·
(
X̃t+1 − X̂t+1

)
− lim

T→∞
E0

(
βT+1∇1N

(
X̃T+1, X̃T+2,ZT+2

)
·
(
X̃T+1 − X̂T+1

))
= − lim

T→∞
E0

(
βT+1∇1N

(
X̃T+1, X̃T+2,ZT+2

)
·
(
X̃T+1 − X̂T+1

))
.

(A.1)

In the last step, we apply the law of iterated expectations. Both plans ξ̃ and ξ̂ are in Ξ(X0), hence
∇1N

(
X̃t+1, X̃t+2,Zt+2

)
and X̃t − X̂t are uniformly bounded. With β ∈ (0, 1), this implies that the limit in the

last line of (A.1) is zero, thus V ≥ 0. Note that if θ2 = φ2 = κ2 = ζ2 = 0 and no adjustment costs apply,
we have ∇1N

(
X̃t+1, X̃t+2,Zt+2

)
= 0.

As ξ̂ was arbitrarily chosen, V ≥ 0 implies that a solution ξ̃ of the Euler equations (5) gives an optimal
plan, i.e., a solution of (4). This proves claim (i) of Theorem 1.

In the next step, we construct the solution of (5) for the different cases.

39



The Euler equations (5) read

0 = −dt + (1 − ρ)rt −
(
βθ2 + δ(1 − ρ)2 + θ1 + θ2

)
Dt + δ(1 − ρ)Lt−

− δ(1 − ρ)DCB
t + δ(1 − ρ)LCB

t + θ2Dt−1 + βθ2EtDt+1,

0 = lt − rt + δ(1 − ρ)Dt − (βφ2 + δ + φ1 + φ2) Lt + δDCB
t − δLCB

t + φ2Lt−1 + βφ2EtLt+1,

0 = −dCB
t + rt − δ(1 − ρ)Dt + δLt − (βκ2 + δ + κ1 + κ2) DCB

t + δLCB
t + κ2DCB

t−1 + βκ2EtDCB
t+1,

0 = lCB
t − rt − δ(1 − ρ)Dt + δLt − δDCB

t − (βζ2 + δ + ζ1 + ζ2) LCB
t + ζ2LCB

t−1 + βζ2EtLCB
t+1.

(A.2)

In Case 1, one directly confirms that (6) gives the unique solution of (A.2), proving claim (ii) of Theo-
rem 1.

Assume now that θ2, φ2, κ2, ζ2 > 0, and δ ≥ 0, which covers Case 2 and Case 3. The Euler equations (A.2)
can now be written as first-order system,

Et

(
Xt+1

Yt+1

)
= A

(
Xt

Yt

)
+ B

(
Zt

0

)
(A.3)

with

Xt =


Dt

Lt

DCB
t

LCB
t

 , Yt =


Dt−1

Lt−1

DCB
t−1

LCB
t−1

 , Zt =


dt

rt

lt

dCB
t

lCB
t

 , A =

(
A1 A2

I 0

)
,

where

A1 =


1 +

δ(1−ρ)2

βθ2
+ 1

β
+ θ1

βθ2
−
δ(1−ρ)
βθ2

δ(1−ρ)
βθ2

−
δ(1−ρ)
βθ2

−
δ(1−ρ)
βφ2

1 + δ
βφ2

+ 1
β

+
φ1
βφ2

− δ
βφ2

δ
βφ2

δ(1−ρ)
βκ2

− δ
βκ2

1 + δ
βκ2

+ 1
β

+ κ1
βκ2

− δ
βκ2

−
δ(1−ρ)
βζ2

δ
βζ2

− δ
βζ2

1 + δ
βζ2

+ 1
β

+
ζ1
βζ2

 , A2 = −
1
β

I,

and

B =



1
βθ2
−

1−ρ
βθ2

0 0 0 0 0 0
0 1

βφ2
− 1
βφ2

0 0 0 0 0
0 − 1

βκ2
0 1

βκ2
0 0 0 0

0 1
βζ2

0 0 − 1
βζ2

0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

The system (A.3) is of Blanchard-Kahn type with Xt non-predetermined in t, and Yt = Xt−1 predetermined
in t. By Proposition 1 in Blanchard and Kahn (1980), the Euler equations will have a solution if and only
if the coefficient matrix A has exactly four explosive eigenvalues, i.e., eigenvalues with absolute values
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strictly greater than 1. To show that this holds, we use the following lemma.

Lemma 1. Let A ∈ R2n×2n, n ≥ 1, be of the form

A :=
(
Ã cI
I 0

)
with Ã ∈ Rn×n and c , 0. Then A is non-singular, and the eigenvalues of A are the solutions of

λ2 − λµ j − c = 0,

where µ j is an eigenvalue of Ã, j = 1, . . . , n.

Proof. Let c , 0. The determinant of A is cn, thus A is non-singular. The eigenvalues of A are the roots
of the characteristic polynomial. As the eigenvalues are non-zero, it is given as

χ(λ) = det (A − λI)

= det (−λI) det
(
(Ã − λI) − cI(−λI)−1

)
= (−λ)n det

(
Ã −

(
λ −

c
λ

)
I
)
,

where the second factor in the last line is the characteristic polynomial of Ã, evaluated at µ = λ − c/λ. �

Using the Gershgorin circle theorem and its generalization by Feingold and Varga (1962), we find that
the eigenvalues µ1, . . . , µ4 of A1 are real, and that

µ j >
2
√
β
, j = 1, . . . , 4.

By Lemma 1, it follows that all eigenvalues of A are real and that there are four eigenvalues greater than
1 and four less than or equal to 1. Let λ1, . . . , λ8 denote the eigenvalues of A such that

λ1, . . . , λ4 > 1, λ5, . . . , λ8 ≤ 1,

and
λ j + λ j+4 = µ j, j = 1, . . . , 4, (A.4)

which follows from Vieta’s formulas. In particular, the number of explosive eigenvalues equals the
number of non-predetermined variables, and there is a unique-bounded solution of (A.3). Our solution
strategy is to diagonalize matrix A to separate the stable from the unstable part of equation (A.3).

We thus need to find a basis transformation H such that H−1AH is diagonal. The columns of H are
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eigenvectors of A, and we use the specific block structure of A and (A.4) to find an appropriate H. Direct
calculations yield that matrix H, given by

H =



λ1 λ2h21 λ3h31 λ4h41 λ5 λ6h21 λ7h31 λ8h41

λ1h11 λ2 λ3h32 λ4h42 λ5h11 λ6 λ7h32 λ8h42

λ1h12 λ2h22 λ3 λ4h43 λ5h12 λ6h22 λ7 λ8h43

λ1h13 λ2h23 λ3h33 λ4 λ5h13 λ6h23 λ7h33 λ8

1 h21 h31 h41 1 h21 h31 h41

h11 1 h32 h42 h11 1 h32 h42

h12 h22 1 h43 h12 h22 1 h43

h13 h23 h33 1 h13 h23 h33 1


,

will diagonalize A, and that its jth column is an eigenvector for the eigenvalue λ j, j = 1, . . . , 8, of A. Note
that H is of block form,

H =

(
H1 H2

H3 H3

)
, (A.5)

that aligns to the block form of A. The matrix H3 is invertible as H is invertible. The columns of H1 and
H2 are the columns of H3 multiplied by an eigenvalue λ j.

We use H to introduce new coordinates, (
Xt

Yt

)
= H

(
Ut

S t

)
, (A.6)

in which (A.3) reads

Et

(
Ut+1

S t+1

)
= Λ

(
Ut

S t

)
+ H−1B

(
Zt

0

)
(A.7)

with A = HΛH−1, Λ = diag(λ1, . . . , λ8). Let (Ut, S t) be the unique solution of (A.7). With H−1 =

(ĥi j)i, j=1,...,8, we find

Ui,t = −

∞∑
k=0

λ−(k+1)
i

{
ĥi1

βθ2
Et

[
dt+k − (1 − ρ)rt+k

]
+

ĥi2

βφ2
Et [rt+k − lt+k] +

+
ĥi3

βκ2
Et

[
dCB

t+k − rt+k

]
+

ĥi4

βζ2
Et

[
rt+k − lCB

t−k

]}
,

(A.8)

see Blanchard and Kahn (1980). Using (A.5) and (A.6), we have

Xt = H1Ut + H2S t, Yt = H3Ut + H3S t,

which gives
Xt = (H1 − H2) Ut + H2H−1

3 Yt = (H1 − H2) Ut + H2H−1
3 Xt−1. (A.9)
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As the diagonal entries of H1−H2 are the differences between the coupled eigenvalues, λ1−λ5, . . . , λ4−λ8,
we have established the solution (8) in claim (iv) of Theorem 1.

For δ = 0, H3 is the identity matrix, and H1 and H2 are diagonal matrices because A1 is diagonal in
that case. In particular, H2 = diag(λ5, . . . , λ8). In addition, ĥi j = 0 if i , j, and ĥii = (λi − λi+4)−1 for
i, j = 1, . . . , 4. With (A.8), the solution (A.9) for δ = 0 is as claimed by (7). This completes the proof of
Theorem 1. �

Appendix B. Long-run equilibrium

Lemma 2. Assume that there is a steady state for system (4) and let E∗ denote the expectation with
respect to the steady-state probability distribution. Then the steady-state solution of system (4) is

D∗ =
(1 − ρ)E∗[r f

t − dt]
θ1

, L∗ =
E∗[lt − r f

t ]
φ1

,

D∗CB =
E∗[r f

t − dCB
t ]

κ1
, L∗CB =

E∗[lCB
t − r f

t ]
ζ1

(B.1)

if and only if δ = 0.

Proof. If φ2, θ2, κ2, ζ2, δ = 0, equation (B.1) is directly obtained as expected value of equation (6). For
φ2, θ2, κ2, ζ2 > 0, we use the notation of Appendix A and equation (A.9). The steady state X∗ is the
solution of (

I − H2H−1
3

)
X∗ = (H1 − H2)U∗ (B.2)

where U∗ denotes the forward solution from equation A.8 with expected value operator E∗. For δ = 0,
equation B.2 decouples as H3 is the identity matrix. The first equation gives

(1 − λ5)D∗ = (λ1 − λ5)U∗1

= (λ1 − λ5)
∞∑

k=0

λ−(k+1)
1

ĥ11(1 − ρ)
βθ2

E∗ [rt+k − dt+k]

=
1 − ρ
βθ2
E∗ [rt − dt]

∞∑
k=0

λ−(k+1)
1

=
1 − ρ
βθ2
E∗ [rt − dt]

1
λ1 − 1

(B.3)

as ĥ11 = λ1 − λ5 for δ = 0 and E∗ is the expectation with respect to the asymptotic probability measure.
With Vieta’s formula, we find further that, for δ = 0,

λ1 + λ5 = µ1 =
θ1

βθ2
, λ1λ5 = β,
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see also Lemma 1. Plugging this into equation (B.3) yields the expression for D∗ as claimed in equa-
tion (B.1). Analogous arguments yield the other equations in (B.1).

Appendix C. Estimation results with equity

In this section, we add equity, defined as capital and reserves that include issued equity, profits and losses,
and various provisions, as a fifth liability position to our model. In Table C.10, we see strong impact of
log(equity)(-1) on other liabilities and assets.
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Table C.10: PVAR: Balance Sheet Liabilities with Equity

log(HH deposits) log(NFC deposits) log(liab. securities) log(CB deposits) log(equity)

log(HH deposits) (-1) 0.4080∗∗∗ 0.2362∗∗∗ −0.1011∗∗ 0.1079 0.0047
(0.0361) (0.0629) (0.0433) (0.0753) (0.0427)

log(NFC deposits) (-1) 0.3430∗∗∗ 0.3627∗∗∗ 0.0807∗ 0.0553 0.0766∗∗

(0.0613) (0.0738) (0.0418) (0.0460) (0.0358)
log(liab. securities) (-1) 0.0800∗ 0.0187 0.8023∗∗∗ 0.0137 −0.0389

(0.0476) (0.0331) (0.0422) (0.0598) (0.0437)
log(CB deposits)(-1) 0.0018 −0.0033 −0.0281∗∗∗ 0.8719∗∗∗ 0.0010

(0.0111) (0.0096) (0.0064) (0.0230) (0.0111)
log(equity)(-1) 0.0327 0.1427∗∗∗ 0.0996∗∗∗ −0.1467∗∗ 0.3035∗∗∗

(0.0294) (0.0450) (0.0344) (0.0619) (0.0295)
log(HH Con. Loans) (-1) 0.1823∗∗ 0.1383 0.0373 0.1592 0.0812∗∗

(0.0754) (0.0879) (0.0648) (0.1013) (0.0342)
log(HH Mortgage loans) (-1) −0.0014 −0.1794∗∗∗ 0.0429 −0.0010 0.1940∗∗∗

(0.0635) (0.0580) (0.0436) (0.0654) (0.0420)
log(NFC loans) (-1) 0.0430 0.2063∗∗∗ 0.0960∗ −0.1054 0.2742∗∗∗

(0.0473) (0.0539) (0.0531) (0.0956) (0.0480)
log(assets securities) (-1) 0.0195 0.1039∗∗ −0.0496 −0.0148 −0.0073

(0.0549) (0.0464) (0.0655) (0.0644) (0.0463)
log(CB assets) (-1) −0.0038 −0.0212 0.0443 −0.0363 0.0125

(0.0350) (0.0295) (0.0283) (0.0283) (0.0276)

DR NFC −0.1762∗∗∗ −0.1033∗ 0.1693∗∗∗ 0.1067 0.0549
(0.0427) (0.0542) (0.0539) (0.0790) (0.0402)

DR HH −0.2970∗∗∗ 0.0593 0.0050 0.1577∗∗ 0.0323
(0.0537) (0.0573) (0.0711) (0.0628) (0.0364)

LR Consumption HH 0.0430 −0.0150 −0.0894∗∗∗ −0.0051 0.0327
(0.0299) (0.0243) (0.0238) (0.0224) (0.0293)

LR Mortgage HH 0.0347 −0.0354 0.0188 −0.0061 0.0302
(0.0383) (0.0457) (0.0370) (0.0598) (0.0321)

LR NFC 0.0696∗ −0.0039 −0.1016∗∗∗ −0.0398 0.0584
(0.0389) (0.0507) (0.0278) (0.0584) (0.0413)

CB refinancing rate −0.0158 −0.1090∗ 0.1617∗∗∗ −0.3521∗∗∗ 0.0776∗∗

(0.0651) (0.0565) (0.0362) (0.0702) (0.0316)
Euribor 0.0043 −0.0127 0.0747∗∗ −0.0765 −0.0427∗

(0.0339) (0.0375) (0.0346) (0.0732) (0.0242)
2-year gov bond yield 0.0838∗ 0.1211∗∗∗ −0.0682∗∗ 0.1272∗∗ −0.1458∗∗∗

(0.0478) (0.0360) (0.0299) (0.0527) (0.0359)
10-year gov bond yield 0.0319 −0.0550∗ 0.0204 0.0477 −0.0730∗∗

(0.0378) (0.0317) (0.0243) (0.0473) (0.0344)
Dummy neg. Euribor −0.1063∗∗∗ −0.1337∗∗∗ 0.0617∗ 0.0994 0.0689∗∗∗

(0.0328) (0.0377) (0.0363) (0.0854) (0.0194)
Dummy neg. Euribor x Euribor 0.0158 −0.0152 0.0663∗∗∗ −0.2162∗∗∗ 0.0701∗∗∗

(0.0333) (0.0292) (0.0176) (0.0399) (0.0153)
PSPP CSPP PEPP 0.0038 0.0188 0.0836∗∗ 0.0395 0.0994∗∗∗

(0.0460) (0.0564) (0.0382) (0.0686) (0.0261)
const 0.0055 0.0065 −0.0105∗∗ −0.0016 0.0171∗∗∗

(0.0046) (0.0073) (0.0048) (0.0064) (0.0033)

Number of Observations 11, 201 11, 201 11, 201 11, 201 11, 201
Number of Groups 136 136 136 136 136
Obs per group: min 4 4 4 4 4
avg 82.40 82.40 82.40 82.40 82.40
max 148 148 148 148 148
Hansen test of overid: statistics: 91.82 91.82 91.82 91.82 91.82
nof para: 900 900 900 900 900
p-value: 1.00 1.00 1.00 1.00 1.00
RMSE 0.09 0.06 0.10 1.25 0.04

Source. IMIR. IBSI. Own calculations.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1. We apply the two-step system GMM estimator by Blundell and Bond (1998) with Windmeijer corrected
standard errors (Windmeijer, 2005). All models are estimated by Sigmund and Ferstl (2021).
The dependent variable is log(HH deposits) in the first column. Log(HH deposits) refers to the logarithm of household deposits. The dependent
variable is log(NFC deposits) in the second column. Log(NFC deposits) refers to the logarithm of non-financial corporate deposits. The dependent
variable is log(CB deposits) in the third column. Log(CB deposits) refers to logarithm of central bank deposits. The dependent variable is log(liab.
securities) in the fourth column. Log(liab. securities) refers to logarithm of securities on the liability side. The dependent variable is log(equity) in
the fifth column. Log(equity) refers to logarithm of capital and reserves that includes issued equity, profits and losses and various provisions.
DR HH refers to the refers to the average deposit rate of households. DR NFC refers to the average deposit rate of non-financial corporations.
2-year gov bond yield refers to the two-year zero coupon government bond yield and should approximate the bond yield of securities on the liability
side. CB refinancing rate refers to the most favorable interest rate paid on TLTROs.
LR Consumption HH refers to the refers to the average lending rate of household consumption loans. LR Mortgage HH refers to the average
lending rate of mortgage loans. LR NFC refers to the average lending rate of non-financial corporations. 10-year gov bond yield refers to the
ten-year zero coupon government bond yield and should approximate the bond yield of securities on the asset side. ECB deposit facility defines
the interest banks receive for depositing money with the CB overnight.
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Table C.11: PVAR: Balance Sheet Assets with Equity

log(HH Con. Loans) log(HH Mortgage loans) log(NFC loans) log(assets securities) log(CB assets)

log(HH deposits) (-1) 0.0157 −0.0267 0.2256∗∗∗ 0.0114 −0.0365
(0.0435) (0.0419) (0.0429) (0.0300) (0.0829)

log(NFC deposits) (-1) 0.0230 0.0325 0.1929∗∗∗ 0.0176 0.0446
(0.0389) (0.0339) (0.0345) (0.0312) (0.0558)

log(liab. securities) (-1) 0.0129 0.0264 −0.1470∗∗∗ −0.1352∗∗∗ 0.0290
(0.0498) (0.0398) (0.0521) (0.0388) (0.1001)

log(CB deposits)(-1) −0.0141 −0.0170 0.0065 0.0114 −0.0246
(0.0103) (0.0172) (0.0129) (0.0119) (0.0301)

log(equity)(-1) 0.2285∗∗∗ 0.2608∗∗∗ 0.2207∗∗∗ 0.0859∗∗∗ −0.0055
(0.0247) (0.0313) (0.0350) (0.0194) (0.0558)

log(HH Con. Loans) (-1) 0.2986∗∗∗ 0.2911∗∗∗ 0.1107∗∗∗ 0.2395∗∗∗ 0.0359
(0.0443) (0.0428) (0.0429) (0.0434) (0.0708)

log(HH Mortgage loans) (-1) 0.3523∗∗∗ 0.3884∗∗∗ 0.0644 0.0521 0.0894
(0.0549) (0.0434) (0.0499) (0.0495) (0.1010)

log(NFC loans) (-1) 0.0251 0.0803∗ 0.2704∗∗∗ 0.0230 0.0439
(0.0459) (0.0455) (0.0461) (0.0345) (0.0740)

log(assets securities) (-1) 0.0589 0.0428 0.0637 0.5696∗∗∗ 0.0953
(0.0475) (0.0640) (0.0605) (0.0335) (0.0624)

log(CB assets) (-1) −0.0274 0.0377 0.0109 0.0913∗∗∗ 0.6227∗∗∗

(0.0324) (0.0371) (0.0352) (0.0176) (0.0667)

DR NFC 0.0241 −0.0970∗∗∗ 0.0087 0.1948∗∗∗ 0.1977∗∗

(0.0399) (0.0361) (0.0519) (0.0321) (0.0899)
DR HH 0.2065∗∗∗ −0.1035∗∗ 0.0392 0.0718 0.0718

(0.0394) (0.0488) (0.0591) (0.0524) (0.1386)
LR Consumption HH 0.0101 −0.0081 −0.1204∗∗∗ −0.0051 0.0592

(0.0361) (0.0520) (0.0377) (0.0257) (0.0720)
LR Mortgage HH −0.1471∗∗∗ −0.0165 0.0953∗∗ 0.1280∗∗∗ −0.0449

(0.0373) (0.0379) (0.0388) (0.0297) (0.1298)
LR NFC −0.1365∗∗∗ −0.0945∗∗∗ 0.0796∗∗∗ 0.0613∗∗ −0.1543

(0.0280) (0.0287) (0.0237) (0.0242) (0.1052)

CB refinancing rate 0.0390 0.1361∗∗∗ 0.0116 0.0973∗∗∗ −0.2678∗∗∗

(0.0321) (0.0348) (0.0424) (0.0331) (0.0754)
Euribor 0.0884∗∗∗ −0.0129 0.0366∗ 0.0258 0.0205

(0.0303) (0.0297) (0.0213) (0.0214) (0.0759)
2-year gov bond yield 0.0774∗∗ −0.0419 0.0345 −0.0937∗∗∗ 0.0258

(0.0387) (0.0294) (0.0462) (0.0297) (0.0461)
10-year gov bond yield −0.0106 0.1218∗∗∗ −0.0483 −0.1197∗∗∗ −0.1212∗

(0.0343) (0.0328) (0.0354) (0.0320) (0.0651)
Dummy neg. Euribor −0.0436 0.0809∗∗∗ −0.0830∗∗∗ 0.0469∗∗ 0.1245∗∗

(0.0307) (0.0249) (0.0198) (0.0204) (0.0525)
Dummy neg. Euribor x Euribor −0.0135 0.0680∗∗∗ 0.0137 0.0282∗ −0.1634∗∗∗

(0.0198) (0.0197) (0.0222) (0.0168) (0.0256)
PSPP CSPP PEPP −0.0764∗∗∗ −0.0082 0.0051 −0.0288∗∗ 0.1584∗∗

(0.0193) (0.0181) (0.0351) (0.0144) (0.0617)
const 0.0086∗∗∗ 0.0060∗ 0.0207∗∗∗ 0.0108∗∗∗ 0.0001

(0.0031) (0.0037) (0.0037) (0.0036) (0.0088)

Number of Observations 11, 201 11, 201 11, 201 11, 201 11, 201
Number of Groups 136 136 136 136 136
Obs per group: min 4 4 4 4 4
avg 82.40 82.40 82.40 82.40 82.40
max 148 148 148 148 148
Hansen test of overid: statistics: 91.82 91.82 91.82 91.82 91.82
nof para: 900 900 900 900 900
p-value: 1.00 1.00 1.00 1.00 1.00
RMSE 0.09 0.09 0.09 0.12 1.00

Source. IMIR. IBSI. Own calculations.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1. We apply the two-step system GMM estimator by Blundell and Bond (1998) with Windmeijer corrected standard errors
(Windmeijer, 2005). All models are estimated by Sigmund and Ferstl (2021).
The dependent variable is log(HH Con. Loans) in the first column. Log(HH Con. Loans) refers to the logarithm of consumption loans.
The dependent variable is log(HH Mortgage loans) in the second column. Log(HH Mortgage loans) refers to the logarithm of household mortgage loans.
The dependent variable is log(NFC loans) in the third column. Log(NFC loans) refers to logarithm of non-financial corporate loans.
The dependent variable is log(CB assets) in the fourth column. Log(CB assets) refers to logarithm of central bank assets.
The dependent variable is log(assets securities) in the fourth column. Log(assets securities) refers to logarithm of securities on the asset side.
For each dependent variable on the liability side, we include the corresponding interest rate: DR HH refers to the refers to the average deposit rate of
households. DR NFC refers to the average deposit rate of non-financial corporations. 2-year gov bond yield refers to the two-year zero coupon government
bond yield and should approximate the bond yield of securities on the liability side. CB refinancing rate refers to the most favorable interest rate paid on
TLTROs.
For each dependent variable on the asset side, we include the corresponding interest rate: LR Consumption HH refers to the refers to the average lending
rate of household consumption loans. LR Mortgage HH refers to the average lending rate of mortgage loans. LR NFC refers to the average lending rate
of non-financial corporations. 10-year gov bond yield refers to the ten-year zero coupon government bond yield and should approximate the bond yield of
securities on the asset side. ECB deposit facility defines the interest banks receive for depositing money with the central bank overnight.
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