WHOSE INFLATION RATES MATTER MOST? A DSGE MODEL & ML APPROACH TO MONETARY POLICY IN THE EURO AREA

OENB & SUERF ANNUAL ECONOMIC CONFERENCE 2024

Daniel Stempel Johannes Zahner

Heinrich-Heine-Universität Düsseldorf

Goethe University Frankfurt

June 2024

TABLE OF CONTENTS

1 Introduction

2 Combining DSGE and Machine Learning

- **3** Results
- 4 Conclusion

INFLATION DIFFERENTIALS

- Euro area monetary policy is conducted uniformly for 20 member countries.
- How does the ECB react to deflationary and inflationary pressure in member states?
- Particularly relevant if countries deviate structurally from the euro area average inflation rate.

Figure. Source: ECB Website

INFLATION DIFFERENTIALS

- Euro area monetary policy is conducted uniformly for 20 member countries.
- How does the ECB react to deflationary and inflationary pressure in member states?
- Particularly relevant if countries deviate structurally from the euro area average inflation rate.

Figure. Source: ECB Website

INFLATION DIFFERENTIALS

- Euro area monetary policy is conducted uniformly for 20 member countries.
- How does the ECB react to deflationary and inflationary pressure in member states?
- Particularly relevant if countries deviate structurally from the euro area average inflation rate.

Figure. Source: ECB Website

INFLATION DEVELOPMENT IN THE EURO AREA

- EMU-members structurally differ in the volatility of their inflation rates.
 - Austria, Germany, the Netherlands \rightarrow Low Volatility
 - Greece, Ireland, Italy, Portugal, and Spain \rightarrow High Volatility

Figure. Average Inflation Deviations.

 $Calculating \ \text{the bias}?$

Whose inflation rates matter most for the ECB's monetary policy?

	Dependent variable:							
	Interest Rate							
	(1) (2) (3) (4)							
HICP -2%	2.04***	2.24***	2.52***	2.44***	1.86***			
	(0.12)	(0.14)	(0.19)	(0.26)	(0.32)			
Constant	-0.21	-0.17	-0.12	-0.20	-0.41^{*}			
	(0.16)	(0.17)	(0.19)	(0.22)	(0.24)			
Weight on LV countries $(\omega) =$	0	0.2	0.5	0.8	1			
Observations	240	240	240	240	240			
R ²	0.56	0.53	0.43	0.26	0.12			

Table. EMU Taylor Rule

Note: HICP is calculated as follows: $HICP := \omega \times CPI_{LV} + (1 - \omega) \times CPI_{HV}$.

 \rightarrow Which weight accurately describes historical EMU monetary policy?

 $Calculating \ \text{the bias}?$

Whose inflation rates matter most for the ECB's monetary policy?

	Dependent variable:						
	Interest Rate						
	(1)	(2)	(3)	(4)	(5)		
HICP -2%	2.04***	2.24***	2.52***	2.44***	1.86***		
	(0.12)	(0.14)	(0.19)	(0.26)	(0.32)		
Constant	-0.21	-0.17	-0.12	-0.20	-0.41^{*}		
	(0.16)	(0.17)	(0.19)	(0.22)	(0.24)		
Weight on LV countries $(\omega) =$	0	0.2	0.5	0.8	1		
Observations	240	240	240	240	240		
R ²	0.56	0.53	0.43	0.26	0.12		

Table. EMU Taylor Rule

Note: HICP is calculated as follows: $HICP := \omega \times CPI_{LV} + (1 - \omega) \times CPI_{HV}$.

 \rightarrow Which weight accurately describes historical EMU monetary policy?

 $Calculating \ \text{the bias}?$

Whose inflation rates matter most for the ECB's monetary policy?

	Dependent variable: Interest Rate					
	(1)	(2)	(3)	(4)	(5)	
HICP -2%	2.04***	2.24***	2.52***	2.44***	1.86***	
	(0.12)	(0.14)	(0.19)	(0.26)	(0.32)	
Constant	-0.21	-0.17	-0.12	-0.20	-0.41^{*}	
	(0.16)	(0.17)	(0.19)	(0.22)	(0.24)	
Weight on LV countries $(\omega) =$	0	0.2	0.5	0.8	1	
Observations	240	240	240	240	240	
R ²	0.56	0.53	0.43	0.26	0.12	

Table. EMU Taylor Rule

Note: HICP is calculated as follows: $HICP := \omega \times CPI_{LV} + (1 - \omega) \times CPI_{HV}$.

 \rightarrow Which weight accurately describes historical EMU monetary policy?

PAPER OVERVIEW

Our "data-driven" solution:

- 1. Build a two-country New Keynesian model (NKM) of a monetary union with different central bank regimes.
- 2. Simulate NKM to generate a data for different policy regime.
- 3. Train machine learning models (ML) in classifying each regimes.
- 4. Use the trained ML to classify historical EMU data.

- 1. Distribution of the ECB's historical inflation weight is biased.
- 2. ECB react more strongly to countries whose inflation rates exhibit larger deviations from their long-term trend.

PAPER OVERVIEW

Our "data-driven" solution:

- 1. Build a two-country New Keynesian model (NKM) of a monetary union with different central bank regimes.
- 2. Simulate NKM to generate a data for different policy regime.
- 3. Train machine learning models (ML) in classifying each regimes.
- 4. Use the trained ML to classify historical EMU data.

- 1. Distribution of the ECB's historical inflation weight is biased.
- 2. ECB react more strongly to countries whose inflation rates exhibit larger deviations from their long-term trend.

PAPER OVERVIEW

Our "data-driven" solution:

- 1. Build a two-country New Keynesian model (NKM) of a monetary union with different central bank regimes.
- 2. Simulate NKM to generate a data for different policy regime.
- 3. Train machine learning models (ML) in classifying each regimes.
- 4. Use the trained ML to classify historical EMU data.

- 1. Distribution of the ECB's historical inflation weight is biased.
- 2. ECB react more strongly to countries whose inflation rates exhibit larger deviations from their long-term trend.

PAPER OVERVIEW

Our "data-driven" solution:

- 1. Build a two-country New Keynesian model (NKM) of a monetary union with different central bank regimes.
- 2. Simulate NKM to generate a data for different policy regime.
- 3. Train machine learning models (ML) in classifying each regimes.
- 4. Use the trained ML to classify historical EMU data.

- 1. Distribution of the ECB's historical inflation weight is biased.
- 2. ECB react more strongly to countries whose inflation rates exhibit larger deviations from their long-term trend.

PAPER OVERVIEW

Our "data-driven" solution:

- 1. Build a two-country New Keynesian model (NKM) of a monetary union with different central bank regimes.
- 2. Simulate NKM to generate a data for different policy regime.
- 3. Train machine learning models (ML) in classifying each regimes.
- 4. Use the trained ML to classify historical EMU data.

- 1. Distribution of the ECB's historical inflation weight is biased.
- 2. ECB react more strongly to countries whose inflation rates exhibit larger deviations from their long-term trend.

PAPER OVERVIEW

Our "data-driven" solution:

- 1. Build a two-country New Keynesian model (NKM) of a monetary union with different central bank regimes.
- 2. Simulate NKM to generate a data for different policy regime.
- 3. Train machine learning models (ML) in classifying each regimes.
- 4. Use the trained ML to classify historical EMU data.

- 1. Distribution of the ECB's historical inflation weight is biased.
- 2. ECB react more strongly to countries whose inflation rates exhibit larger deviations from their long-term trend.

TABLE OF CONTENTS

1 Introduction

2 Combining DSGE and Machine Learning

- **3** Results
- 4 Conclusion

Simple currency union with 2 countries (*HV* and *LV*) with each a household and a firm sector

Monetary Policy Targeting Rule:

$$i_t = \rho + \phi_\pi \left(\omega_\pi \pi_t^{C,HV} + (1 - \omega_\pi) \pi_t^{C,LV} \right)$$

- 1. central bank reacts to the union-wide inflation rate: $\omega_{\pi} \approx 0.5$
- 2. central bank reacts more strongly to country HV: $\omega_{\pi} = 0.8$
- 3. central bank reacts more strongly to country LV: $\omega_{\pi} = 0.2$
- Calibrate country LV (HV) to represent the LV (HV) EMU-members¹
- Simulate 3×10.000 periods of macro variables $(C, L, \pi, ...) \rightarrow$ Split train/test set: 80/20
- Train/Evaluate ML models on the simulated data (neural network outperforms the other models).
- Use neural network to predict ω on historical EMU data.

 \rightarrow ML evaluation) (\rightarrow Mo

¹Breuss and Rabitsch (2008) for AT, Albonico et al. (2019) for DE, and Garcia et al. (2021) for NL; Papageorgiou (2014) (EL), Garcia et al. (2021) (IE), Albonico et al. (2019) (ES, IT), and Almeida (2009) (PT)

- Simple currency union with 2 countries (HV and LV) with each a household and a firm sector
- Monetary Policy Targeting Rule:

$$i_t = \rho + \phi_{\pi} \left(\omega_{\pi} \pi_t^{C,HV} + (1 - \omega_{\pi}) \pi_t^{C,LV} \right)$$

- 1. central bank reacts to the union-wide inflation rate: $\omega_{\pi} \approx 0.5$
- 2. central bank reacts more strongly to country *HV*: $\omega_{\pi} = 0.8$
- 3. central bank reacts more strongly to country LV: $\omega_{\pi} = 0.2$
- Calibrate country LV (HV) to represent the LV (HV) EMU-members¹
- Simulate 3×10.000 periods of macro variables $(C, L, \pi, ...) \rightarrow$ Split train/test set: 80/20
- Train/Evaluate ML models on the simulated data (neural network outperforms the other models).
- Use neural network to predict ω on historical EMU data.

 \rightarrow ML evaluation) (\rightarrow Mc

¹Breuss and Rabitsch (2008) for AT, Albonico et al. (2019) for DE, and Garcia et al. (2021) for NL; Papageorgiou (2014) (EL), Garcia et al. (2021) (IE), Albonico et al. (2019) (ES, IT), and Almeida (2009) (PT)

- Simple currency union with 2 countries (HV and LV) with each a household and a firm sector
- Monetary Policy Targeting Rule:

$$i_t = \rho + \phi_{\pi} \left(\omega_{\pi} \pi_t^{C,HV} + (1 - \omega_{\pi}) \pi_t^{C,LV} \right)$$

- 1. central bank reacts to the union-wide inflation rate: $\omega_{\pi} \approx 0.5$
- 2. central bank reacts more strongly to country HV: $\omega_{\pi} = 0.8$
- 3. central bank reacts more strongly to country LV: $\omega_{\pi} = 0.2$
- Calibrate country LV (HV) to represent the LV (HV) EMU-members¹
- Simulate 3×10.000 periods of macro variables $(C, L, \pi, ...) \rightarrow$ Split train/test set: 80/20
- Train/Evaluate ML models on the simulated data (neural network outperforms the other models).
- Use neural network to predict ω on historical EMU data.

 \rightarrow ML evaluation) (\rightarrow Mc

¹Breuss and Rabitsch (2008) for AT, Albonico et al. (2019) for DE, and Garcia et al. (2021) for NL; Papageorgiou (2014) (EL), Garcia et al. (2021) (IE), Albonico et al. (2019) (ES, IT), and Almeida (2009) (PT)

- Simple currency union with 2 countries (HV and LV) with each a household and a firm sector
- Monetary Policy Targeting Rule:

$$i_t = \rho + \phi_\pi \left(\omega_\pi \pi_t^{C,HV} + (1 - \omega_\pi) \pi_t^{C,LV} \right)$$

- 1. central bank reacts to the union-wide inflation rate: $\omega_{\pi} \approx 0.5$
- 2. central bank reacts more strongly to country HV: $\omega_{\pi} = 0.8$
- 3. central bank reacts more strongly to country LV: $\omega_{\pi} = 0.2$
- Calibrate country LV (HV) to represent the LV (HV) EMU-members¹
- Simulate 3×10.000 periods of macro variables $(C, L, \pi, ...) \rightarrow$ Split train/test set: 80/20
- Train/Evaluate ML models on the simulated data (neural network outperforms the other models).
- Use neural network to predict ω on historical EMU data.

 \rightarrow ML evaluation) (\rightarrow Mo

¹Breuss and Rabitsch (2008) for AT, Albonico et al. (2019) for DE, and Garcia et al. (2021) for NL; Papageorgiou (2014) (EL), Garcia et al. (2021) (IE), Albonico et al. (2019) (ES, IT), and Almeida (2009) (PT)

- Simple currency union with 2 countries (HV and LV) with each a household and a firm sector
- Monetary Policy Targeting Rule:

$$i_t = \rho + \phi_{\pi} \left(\omega_{\pi} \pi_t^{C,HV} + (1 - \omega_{\pi}) \pi_t^{C,LV} \right)$$

- 1. central bank reacts to the union-wide inflation rate: $\omega_{\pi} \approx 0.5$
- 2. central bank reacts more strongly to country HV: $\omega_{\pi} = 0.8$
- 3. central bank reacts more strongly to country LV: $\omega_{\pi} = 0.2$
- Calibrate country LV (HV) to represent the LV (HV) EMU-members¹
- Simulate 3×10.000 periods of macro variables $(C, L, \pi, ...) \rightarrow$ Split train/test set: 80/20
- Train/Evaluate ML models on the simulated data (neural network outperforms the other models).
- Use neural network to predict ω on historical EMU data.

 \rightarrow ML evaluation) (\rightarrow Model f

¹Breuss and Rabitsch (2008) for AT, Albonico et al. (2019) for DE, and Garcia et al. (2021) for NL; Papageorgiou (2014) (EL), Garcia et al. (2021) (IE), Albonico et al. (2019) (ES, IT), and Almeida (2009) (PT)

- Simple currency union with 2 countries (HV and LV) with each a household and a firm sector
- Monetary Policy Targeting Rule:

$$i_t = \rho + \phi_{\pi} \left(\omega_{\pi} \pi_t^{C,HV} + (1 - \omega_{\pi}) \pi_t^{C,LV} \right)$$

- 1. central bank reacts to the union-wide inflation rate: $\omega_{\pi} \approx 0.5$
- 2. central bank reacts more strongly to country HV: $\omega_{\pi} = 0.8$
- 3. central bank reacts more strongly to country LV: $\omega_{\pi} = 0.2$
- Calibrate country LV (HV) to represent the LV (HV) EMU-members¹
- Simulate 3×10.000 periods of macro variables $(C, L, \pi, ...) \rightarrow$ Split train/test set: 80/20
- Train/Evaluate ML models on the simulated data (neural network outperforms the other models).
- Use neural network to predict ω on historical EMU data.

 \rightarrow ML evaluation \rightarrow Model fit

¹Breuss and Rabitsch (2008) for AT, Albonico et al. (2019) for DE, and Garcia et al. (2021) for NL; Papageorgiou (2014) (EL), Garcia et al. (2021) (IE), Albonico et al. (2019) (ES, IT), and Almeida (2009) (PT)

TABLE OF CONTENTS

- **1** Introduction
- 2 Combining DSGE and Machine Learning

3 Results

4 Conclusion

Results Monetary Policy Regime Classifications

- 1. Biased weight: disproportional emphasis (80%) on HV inflation rates
- 2. ECB is reacting more strongly to greater deviations of inflation rates from their long-term trend \rightarrow potential explanation for 1.

Results Monetary Policy Regime Classifications

- 1. Biased weight: disproportional emphasis (80%) on HV inflation rates
- 2. ECB is reacting more strongly to greater deviations of inflation rates from their long-term trend \rightarrow potential explanation for 1.

Results Monetary Policy Regime Classifications

- 1. Biased weight: disproportional emphasis (80%) on HV inflation rates
- 2. ECB is reacting more strongly to greater deviations of inflation rates from their long-term trend \rightarrow potential explanation for 1.

Results On the ECB's Taylor Rule and Loss Function

Standard central bank loss function:

$$L_t = -\frac{1}{2} \left(\pi_t^{EMU} \right)^2$$

where π_t^{EMU} is the EMU-wide inflation rate. The corresponding Taylor rule is given by:

$$i_t = \rho + \phi_\pi \pi_t^{EMU}.$$

Results On the ECB's Taylor Rule and Loss Function

If ECB's losses arise from individual deviations rather than from aggregated ones:

$$L_t = -\frac{1}{2} \sum_{k=1}^{K} \omega^k \left(\pi_t^k \right)^2$$

The interest rate rule becomes:

$$\begin{split} i_t &= \rho + \phi_{\pi} \left(\sum_{k=1}^{K} \Omega_t^k \pi_t^k \right) \\ \Omega_t^k &= \omega^k - \nu \left(|\pi_t^{EMU}| - |\pi_t^k| \right) \end{split}$$

Example:

- *HV* inflation deviation is greater than *LV*'s ($|\pi_t^{HV}| > |\pi_t^{EMU}|$)
- *HV* weight in the Taylor Rule exceeds the "true" *HV* weight: $\Omega_t^{HV} > \omega^{HV}$.

- Problem: We require weights in continuous space
- Adjustments:
 - 1. NKM: redefine the inflation weight: $\Omega_{\pi} \in [0.1, 0.9]$
 - 2. Simulate the NKM in 0.1 Ω_{π} increments
 - 3. Regression NN
- Repeat Training and evaluation of NN
- (As expected:) biased weight (0.67) favors the high-volatility countries.

Figure. Density Inflation Weight Prediction.

- Problem: We require weights in continuous space
- Adjustments:
 - 1. NKM: redefine the inflation weight: $\Omega_{\pi} \in [0.1, 0.9]$
 - 2. Simulate the NKM in 0.1 Ω_{π} increments
 - 3. Regression NN
- Repeat Training and evaluation of NN
- (As expected:) biased weight (0.67) favors the high-volatility countries.

Figure. Density Inflation Weight Prediction.

• Test our hypothesis (greater weight on greater deviation) empirically.

OLS regression:

$$\Omega_t^H = \beta_0 + \beta_1 (|\pi_t^{EMU}| - |\pi_t^L|) + \epsilon_t$$

- ▶ β_0 can be interpreted as the true weight on HV countries ω^H
- \triangleright β_1 can be interpreted as ν (reaction parameter on deviations from EMU inflation)
- Expectation: $\beta_0 \approx 0.5$ and $\beta_1 > 0 (|\pi^L| \uparrow \rightarrow (.) \downarrow \rightarrow \Omega \downarrow)$

- Test our hypothesis (greater weight on greater deviation) empirically.
- OLS regression:

$$\Omega_t^H = \beta_0 + \beta_1 (|\pi_t^{EMU}| - |\pi_t^L|) + \epsilon_t$$

- $\triangleright \beta_0$ can be interpreted as the true weight on HV countries ω^H
- $\triangleright \beta_1$ can be interpreted as ν (reaction parameter on deviations from EMU inflation)
- Expectation: $\beta_0 \approx 0.5$ and $\beta_1 > 0 (|\pi^L| \uparrow \rightarrow (.) \downarrow \rightarrow \Omega \downarrow)$

- Test our hypothesis (greater weight on greater deviation) empirically.
- OLS regression:

$$\Omega_t^H = \beta_0 + \beta_1 (|\pi_t^{EMU}| - |\pi_t^L|) + \epsilon_t$$

- β_0 can be interpreted as the true weight on HV countries ω^H
- $\triangleright \beta_1$ can be interpreted as ν (reaction parameter on deviations from EMU inflation)
- Expectation: $\beta_0 \approx 0.5$ and $\beta_1 > 0 (|\pi^L| \uparrow \rightarrow (.) \downarrow \rightarrow \Omega \downarrow)$

- Test our hypothesis (greater weight on greater deviation) empirically.
- OLS regression:

$$\Omega_t^H = \beta_0 + \beta_1 (|\pi_t^{EMU}| - |\pi_t^L|) + \epsilon_t$$

- β_0 can be interpreted as the true weight on HV countries ω^H
- \triangleright β_1 can be interpreted as ν (reaction parameter on deviations from EMU inflation)
- Expectation: $\beta_0 \approx 0.5$ and $\beta_1 > 0 (|\pi^L| \uparrow \rightarrow (.) \downarrow \rightarrow \Omega \downarrow)$

- Test our hypothesis (greater weight on greater deviation) empirically.
- OLS regression:

$$\Omega_t^H = \beta_0 + \beta_1 (|\pi_t^{EMU}| - |\pi_t^L|) + \epsilon_t$$

- β_0 can be interpreted as the true weight on HV countries ω^H
- \triangleright β_1 can be interpreted as ν (reaction parameter on deviations from EMU inflation)
- Expectation: $\beta_0 \approx 0.5$ and $\beta_1 > 0 (|\pi^L| \uparrow \rightarrow (.) \downarrow \rightarrow \Omega \downarrow)$

		Depe	endent varia	able:	
		Inflat	ion weight	$:= \Omega_t$	
	(1)	(2)	(3)	(4)	(5)
HICP $(= v)$	25.09*** (9.41)				24.06** (9.56)
Y		3.23** (1.36)			3.59** (1.44)
С			-1.83 (2.60)		-2.90 (2.73)
L				8.95 (6.51)	7.44 (6.29)
Constant (= ω^k)	0.62*** (0.02)	0.62*** (0.02)	0.64*** (0.02)	0.63*** (0.02)	0.62*** (0.02)
Observations	70	70	70	70	70
\mathbb{R}^2	0.09	0.08	0.01	0.03	0.21
Adjusted R ²	0.08	0.06	-0.01	0.01	0.16

Table. Main Regression Results.

TABLE OF CONTENTS

- **1** Introduction
- 2 Combining DSGE and Machine Learning
- **3** Results

4 Conclusion

CONCLUSION

- We investigate whose inflation rates matter most for ECB's monetary policy.
- Theoretical model with different monetary policy rules as data-generating process
- Train machine learning model to separate rules
- ▶ Use machine learning model to classify historical EMU data between 2004 and 2021.
- ► Findings:
 - 1. Disproportional emphasis on high volatility countries
 - 2. Stronger reaction to countries whose inflation rates exhibit larger deviations from their long-term trend

ROBUSTNESS TESTS

- 1. Model Extension: Investment and Capital
- 2. Adjustment of Taylor Parameter
- 3. Inclusion of ECB Board Composition
- 4. Use of Inflation Expectations
- \rightarrow No change in findings.

Current work:

- ► More comprehensive framework: Smets-Wouters-Model (2007, AER).
- NKM estimation
- ► ...

LITERATURE

- ML in monetary policy (Tiffin, 2019; Hinterlang, 2020; Hinterlang and Hollmayr, 2021; Paranhos, 2021; Doerr et al., 2021; Fouliard et al., 2021)
- Assessment of inflation differentials within New Keynesian models (Canzoneri et al., 2006; Angeloni and Ehrmann, 2007; Andres et al., 2008; Duarte and Wolman, 2008; Rabanal, 2009; Neyer and Stempel, 2022)

PAGAN FRONTIER

 \rightarrow we propose a modification to the Pagan frontier by combining DSGE and machine learning models to study inflation dynamics in the EMU.

 \rightarrow back

Stempel, Zahner (2023)

CALIBRATION

	Description	Value		
	Households			
		Н	L	
$\overline{\Psi_k}$	Habit parameter	0.77	0.71	
φ_k	Inverse Frisch elasticity	2.01	2.73	
η_z^k	Preference shock strength	1	0.45	
γ_k	Weight of domestic goods	0.75	0.75	
ϑ_C^k	Elasticity of substitution	1.42	1.50	
c	between domestic and foreign goods			
ϵ	Price elasticity of demand	6	6	
β	Discount rate	0.995	0.995	
	Firms			
		Н	L	
α_k	Output elasticity labor	0.33	0.33	
η^k_A	Cost-push shock strength	1	0.45	
λ_k	Calvo parameter	0.737	0.852	
	Central Bank			
ϕ_{π}	Taylor rule coefficient	1.5; 2.5		
ω_{π}	HICP inflation weight	$\frac{C_{SS}^{H}}{C_{SS}^{H}+C_{SS}^{L}}; [0.1, 0.9]$		

	back	
	Dack	
· · · ·		

HISTORICAL EMU DATA

- ▶ Data: Quarterly consumption, employment, output and price level \rightarrow consumption weighted
- EMU wide interest rate \rightarrow MRO + Wu and Xia (2020) shadow rate
- ► NKM reports percentage deviations from steady state → Hamilton (2018) filter to extract the cyclical component
- \rightarrow Classification of historical inflation weight on a quarterly basis between 2004Q4 and 2022Q1.

 \rightarrow back

- We compare the performance of several algorithms in a horserace-style assessment
- All models have the following structure where $y \in (\omega_H, \omega_L, \omega_C)$ and $X \in (Y, C, \pi, ...)$:

 $y_t = h_\beta(X_t) + \epsilon_t$

- Accuracy of models is assessed out-of-sample.
- The NN outperforms the other models by quite a margin.

Confusion Matrix \longrightarrow NNs in a nutshell

► Next: Use NN on historical EMU data

	Accuracy
Uninformed guess	0.33
MLR	0.34
Ridge regression	0.33
Lasso regression	0.33
Elastic net	0.33
K-nearest-neighbor	0.38
Decision tree	0.48
Complex tree	0.48
Prune tree	0.48
Prune complex tree	0.48
Random forest	0.67
Neural network	0.97

- We compare the performance of several algorithms in a horserace-style assessment
- All models have the following structure where $y \in (\omega_H, \omega_L, \omega_C)$ and $X \in (Y, C, \pi, ...)$:

- Accuracy of models is assessed out-of-sample.
- The NN outperforms the other models by quite a margin.

• Confusion Matrix \rightarrow NNs in a nutshell

► Next: Use NN on historical EMU data

\rightarrow back

	Accuracy
Uninformed guess	0.33
MLR	0.34
Ridge regression	0.33
Lasso regression	0.33
Elastic net	0.33
K-nearest-neighbor	0.38
Decision tree	0.48
Complex tree	0.48
Prune tree	0.48
Prune complex tree	0.48
Random forest	0.67
Neural network	0.97

- We compare the performance of several algorithms in a horserace-style assessment
- All models have the following structure where $y \in (\omega_H, \omega_L, \omega_C)$ and $X \in (Y, C, \pi, ...)$:

- Accuracy of models is assessed out-of-sample.
- The NN outperforms the other models by quite a margin.

Confusion Matrix \rightarrow NNs in a nutshell

► Next: Use NN on historical EMU data

\rightarrow back

	Accuracy
Uninformed guess	0.33
MLR	0.34
Ridge regression	0.33
Lasso regression	0.33
Elastic net	0.33
K-nearest-neighbor	0.38
Decision tree	0.48
Complex tree	0.48
Prune tree	0.48
Prune complex tree	0.48
Random forest	0.67
Neural network	0.97

- We compare the performance of several algorithms in a horserace-style assessment
- All models have the following structure where $y \in (\omega_H, \omega_L, \omega_C)$ and $X \in (Y, C, \pi, ...)$:

- Accuracy of models is assessed out-of-sample.
- The NN outperforms the other models by quite a margin.

 \rightarrow Confusion Matrix \rightarrow NNs in a nutshell

► Next: Use NN on historical EMU data

\rightarrow back

	Accuracy
Uninformed guess	0.33
MLR	0.34
Ridge regression	0.33
Lasso regression	0.33
Elastic net	0.33
K-nearest-neighbor	0.38
Decision tree	0.48
Complex tree	0.48
Prune tree	0.48
Prune complex tree	0.48
Random forest	0.67
Neural network	0.97

- We compare the performance of several algorithms in a horserace-style assessment
- All models have the following structure where $y \in (\omega_H, \omega_L, \omega_C)$ and $X \in (Y, C, \pi, ...)$:

- Accuracy of models is assessed out-of-sample.
- The NN outperforms the other models by quite a margin.

 \rightarrow Confusion Matrix \rightarrow NNs in a nutshell

► Next: Use NN on historical EMU data
→ EMU Data

	Accuracy
Uninformed guess	0.33
MLR	0.34
Ridge regression	0.33
Lasso regression	0.33
Elastic net	0.33
K-nearest-neighbor	0.38
Decision tree	0.48
Complex tree	0.48
Prune tree	0.48
Prune complex tree	0.48
Random forest	0.67
Neural network	0.97

EMU TIME SERIES

···· EMU - Low-volatility - - High-volatility

Figure. Hamilton-Filtered Data.

Model fit

Table. Comparison of Simulated Moments with Data.

Variable	Description	$\omega_{\pi} = \frac{C_{SS}^{H}}{C_{SS}^{H} + C_{SS}^{L}}$	$\omega_{\pi} = 0.8$	$\omega_{\pi} = 0.2$	Data
$\overline{C_{SS}^H/C_{SS}^L}$	Relative consumption per capita H, L	0.962	0.962	0.962	0.805
$Y_{H,SS}/Y_{L,SS}$	Relative GDP per capita H, L	0.980	0.980	0.980	0.773
$\sigma(\hat{y}_{L,t}) / \sigma(\hat{y}_{H,t})$	Relative volatility GDP L, H	0.779	0.773	0.783	0.587
$\sigma(\hat{y}_t) / \sigma(\hat{y}_{H,t})$	Relative volatility union-wide GDP, H	0.857	0.888	0.862	0.671
$\sigma(\hat{y}_t) / \sigma(\hat{y}_{L,t})$	Relative volatility union-wide GDP, L	1.010	1.149	1.010	1.144
$\sigma\left(\hat{c}_{t}^{L}\right)/\sigma\left(\hat{c}_{t}^{H}\right)$	Relative volatility consumption L, H	0.152	0.149	0.158	0.559
$\sigma\left(\hat{n}_{t}^{L}\right)/\sigma\left(\hat{n}_{t}^{H}\right)$	Relative volatility labor L, H	0.779	0.773	0.783	0.718
$\sigma\left(\hat{\pi}_{t}^{C,L}\right)/\sigma\left(\hat{\pi}_{t}^{C,H}\right)$	Relative volatility inflation L, H	0.913	0.921	0.904	0.842
$\rho(\hat{y}_{L,t}, \hat{y}_{H,t})$	Correlation GDP L, H	0.859	0.844	0.871	0.591
$\rho\left(\hat{\pi}_{t}^{C,L},\hat{\pi}_{t}^{C,H} ight)$	Correlation inflation L, H	0.931	0.990	0.991	0.989
$\rho\left(\hat{c}_{t}^{L},\hat{c}_{t}^{H}\right)$	Correlation consumption L, H	0.603	0.536	0.640	0.636
$\rho\left(\hat{n}_{t}^{L},\hat{n}_{t}^{H}\right)$	Correlation labor L, H	0.859	0.844	0.871	0.132
$\rho\left(\hat{n}_{t}^{H},\hat{c}_{t}^{H}\right)$	Correlation labor, consumption H	0.943	0.942	0.944	0.627
$\rho\left(\hat{n}_{t}^{L},\hat{c}_{t}^{L}\right)$	Correlation labor, consumption L	0.482	0.437	0.513	0.466

Note: \hat{x}_t denotes the deviation of a variable X from its zero inflation steady state.

- A neural network consists of $i \in I$ layers, with each k perceptrons.
- ► The input for to layer:

$$X_i = f(W_i \times X_{i-1} + b_i)$$

• Two activation functions $f(\cdot)$ in this paper::

$$f(x) = max(0, x)$$
 ReLu
$$f(x) = \frac{e^{x_k}}{\sum_{k=1}^{K} e^{x_k}}$$
 Softmax

• Training process: optimize W_i and b_i

 \rightarrow back

Regression Model III

---- (Scaled) inflation weight

 \rightarrow Stronger deviations *L* coincide with periods of higher (*L*) weight, e.g. 2011, 2017/18 and vice versa.

Stempel, Zahner (2023) \rightarrow back

Figure. Illustration of a Neural Network.

Figure. Illustration of a Logistic Regression.

Figure. Illustration of a Multinomial Logistic Regression.

Figure. Illustration of a Neural Network.

Notes: This figure illustrates the model architecture of a feed-forward NN with four layers: One input layer, two hidden layers, and an output layer. The connections between the layers represent the weighting matrix W_i and are adjusted during the training process.

EVALUATION II

Table. Confusion matrix of out-of-sample prediction by NN

		True label		
		Neutral	LV	HV
Prediction	Neutral	2405	50	39
	LV	48	2442	9
	HV	47	7	2452

 \rightarrow neural network does not suffer from biased predictions

 \rightarrow back