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The IPCC

« International scientific body set up by WMO and UNEP
* Periodic Assessment Reports (AR6 in 2021/22)
« Hundreds of Scientists involved as Authors and Reviewers

* Does not conduct own research, but assesses the latest scientific,
technical and socio-economic literature

« Elaborate Expert and Government Review
« Main findings summarized in “Summary for Policy Makers”
* Nobel Peace Price 2007 together with A. Gore
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WGIII models: Integrated assessment models

Integrated assessment models describe human interventions/systems and their implications

for economic & social development and the environment
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WGIII models: Integrated assessment models

Supply and demand is represented across different service sectors

Narratives of the Shared Socio-economic Pathways
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WGIII models: Integrated assessment models

Implications of energy system choices for the economy are assessed (inl environmental
externalities, such as carbon cost, etc.)
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WGIII models: Integrated assessment models

Supply and demand within the land-use system (food, wood, paper, bioenergy etc.)

Narratives of the Shared Socio-economic Pathways
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WGIII models: Integrated assessment models

Earth system component is used for accounting for climate target such as the Paris Agreement
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WGIII models: Integrated assessment models

Socio-economic assumptions are the way to tell the story of future developments

Socio-economic assumptions

Earth system
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What does carbon neutrality mean?

SECTORAL emissions sources and sinks

Hlustrative zero emissions pathway Different net zero systems across models
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The credibility of country pm

100 ~ Scenarios:

- Case A Current policies

- Case B Current policies plus higher-confidence net-zero targets

- Case C Current policies plus higher and lower-confidence net-zero targets

Estimates of 2030 emissions
80 L under current policies (cases A-D)
or countries’ NDCs (case E)
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System Change (for limiting warming
well below 2C)

* Limiting energy demand!

» Energy demand in 2050 ~ about the same level as today

« Decarbonize electricity (+ storage + grid)

* Electrify demand sectors
» (industry, buildings, mobility)

» Substitute non-electric fuels with low-carbon options

> (power-to-x in industry, freight and aviation)

« Carbon dioxide removal from the atmosphere



Benchmarking of MESSAGEix using PyPSA-Eur
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Is it feasible to reach
net zero targets?

Based on IPCC AR6 and Brutschin, E., Pianta, S., Tavoni, M., Riahi, K.,
Bosetti, V., Marangoni, G., & Ruijven, B. J. van. (2021). A multidimensional
feasibility evaluation of low-carbon scenarios. Environmental Research

Letters, 16(6), 064069.
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Various energy storage proposals exist and
need to be scaled up....

Pumped Hydro Lift Energy Storage Buoyancy Energy Storage
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Mountain Gravity Energy Storage
Global potential (TWh)
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Underground Gravity Energy Storage
Ideas are picked up by industry
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Cost of storage: 1 to 10 USD/kWh
Global energy storage potential 7 to 70 TWh
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Carbon dioxide removal (CDR) needed
to reach net zero emissions

CDR characteristics:

Land-based

Ocean-based
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Disruptive End-user Innovations
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Costs of mitigation are modest and on average lower tha
avoided costs of impacts (of limiting warming to 2C)

GDP losses (%)
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Costs reflect cost-effective allocation of mitigation and does not
consider any financial transfers or other equity considerations

The aggregate global effects of mitigation on global
GDP are small compared to global projected GDP
growth:

- 2.6 - 4.2% GDP loss by 2050 for 1.5C
- 1.3-2.7% GDP loss by 2050 for 2C

Assuming coordinated global action. The corresponding
average reduction in annual global GDP growth over 2020-
2050 is 0.04-0.09 percentage points.

Global GDP is projected to at least double (increase
by at least 100%) over by 2050.

Global cost of limiting warming to 2°C over the 21st
century is lower than the global economic benefits of
reducing warming, unless: i) climate damages are
towards the low end of the range; or, ii) future
damages are discounted at high rates



Key challenges comprise governance and
institutional dimension in the develo

Benchmarking to available evidence
Trajectories from scenario data
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WORKING GROUP Il — MITIGATION OF CLIMATE CHANGE

Not in the WGIII AR6 SPM due to lack of agreemen

Finance Figure

Actual yearly flows compared to average annual needs (billion USD 2015 yr') Multiplication factors*
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Figure 15.4 | Breakdown of recent average (downstream) mitigation investments and model-based investment requirements for 2020-2030 (USD billion)
in scenarios that likely limit warming to 2°C or lower. Mitigation investment flows and model-based investment requirements by sector / segment (energy efficiency in



New fair share analysis based on AR6 pathways indicate
the need of increasing finance flows

Lower-bound
Global inter-regional flows to meet 'fair share' contributions
Upper-bound
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Shonali Pachauri!, Setu Pelz!, Christoph Bertram?, Silvie Kreibiehl3, Narasimha
D. Rao'#, Keywan Riahi!, Youba Sokona>® (Science, 2022)

Investments in the AR6 pathways are follow a
cost-effectiveness approach (consistent with
Article 3 of Paris Agreement)

The pathways, however, do not address the
issue of who is financing the regional
investments

New assessment of equitable and fair finance
(of the investments of the AR6 pathways)
suggest a major increase of finance flows from
Annex-1 to non-Annex-1 regions
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My balkony in 2050
Sigh, Winner of EDITS ARTS 2022
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Energy storage cycles and storage size
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