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Abstract

For a given set of banks, which economic and financial scenarios
will lead to big losses? How big can losses in such scenarios possibly
get? These are the two central questions of macro stress tests. We
believe that most current macro stress testing models have deficits in
answering these questions. They select stress scenarios in a way which
might leave aside many dangerous scenarios and thus create an illusion
of safety; and which might consider highly implausible scenarios and
thus trigger a false alarm. With respect to loss evaluation most stress
tests do not include tools to analyse systemic risk arising from the
interactions of banks with each other and with the markets. We make
a conceptual proposal how these shortcomings may be addressed and
how stress tests could be made both systematic and systemic. We
demonstrate the application of our concepts using publicly available
data on European banks and capital markets, in particular the EBA
2016 stress test results.
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Non technical summary

This paper makes a concrete proposal to improve scenario selection as
well as loss evaluation in solvency stress testing of banks and banking systems.
The motivation for making such a proposal is that we believe that these
improvements are needed because current stress testing methodologies fail
to systematically identifying dangerous but plaubible scenarios. They also
largly neglect important sources of losses that are due to behavioral responses
of banks to changes in their economic environment.

We believe that systematic scenario identification is one methodological
aspect of stress testing that should have a high priority. Current stress
testing methods concentrate mainly on loss evaluation. Stress scenarios are
discussed in an involved and opaque bureaucratic process, which is often
highly politicised. The outcome consists of one or two stress scenarios. Then
a complex loss evaluation procedure follows, involving supervisors as well as
banks to find out the amount of potential impairments in these two scenarios.

Proceeding in this way the stress test may leave aside other dangerous
scenarios which have never been considered and create an illusion of safety.
It also bears the danger of considering scenarios which are very implausible.
This may create a false sense of alarm.

When it comes to loss evaluation in potential scenarios, current stress
testing methodology is mainly focussed on losses arising form exogenous risk
sources. Experience from past crisis has shown that a large bulk of losses
in financial distress arise from endogenous sources, amplifiers of shocks that
are driven by the interaction and interconnectedness of banks. This part of
loss mechanisms is often referred to as systemic risk.

We make two concrete proposals how to select stress scenarios system-
atically and how to take into account losses stemming from bank behavior
that may amplify losses in distress situations. Using public data from the
EBA 2016 stress testing exercise and including other publicly available data
sources we develop a simple example, which serves the role of a proof of
concept of our ideas. Compared with the standard approach currently used
in the EBA stress test, we show that systematic scenario selection and loss
evaluation augmented by systemic risk considerations significantly changes
the relevant risk asessement.
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1 Introduction

Stress testing of banks is a form of economic and financial scenario analysis
with one key question: Which plausible scenarios lead to losses that are able
to substantially impair a bank or the financial system? An anwser requires
identifying dangerous scenarios by evaluating potential losses in a systematic
way.

We claim that current stress testing methodologies need to be improved
because they fail in systematically identifying dangerous and plausible sce-
narios. We propose an approach which delivers a systematic identification of
plausible stress scenarios.

We believe that systematic scenario identification is one methodological
aspect of stress testing that should have a high priority. Current stress
testing methods concentrate mainly on loss evaluation. Stress scenarios are
discussed in an involved and opaque bureaucratic process, which is often
highly politicised. The outcome consists of one or two stress scenarios. Then
a complex loss evaluation procedure follows, involving supervisors as well as
banks to find out the amount of potential impairments in these two scenarios.

Proceeding in this way the stress test may leave aside other dangerous
scenarios which have never been considered and create an illusion of safety.
It also bears the danger of considering scenarios which are very implausible.
This may create a false sense of alarm.

When it comes to loss evaluation in potential scenarios, current stress
testing methodology is mainly focussed on losses arising form exogenous risk
sources. Experience from past crisis has shown that a large bulk of losses
in financial distress arise from endogenous sources, amplifiers of shocks that
are driven by the interaction and interconnectedness of banks. This part of
loss mechanisms is often referred to as systemic risk.

Many stress testing models currently in use are usually not considering
systemic risk in evaluating losses. One reason for this might stem from the
fact that the the literature has discussed many different concepts, without
coming to a clear definition of systemic risk or a prioritization of its main
mechanisms, see Fouque and Langsam [2013]. We argue that the literature
has now moved to a new frontier and that it offers some tractable ways of
including systemic risk in an otherwise traditional stress test. We point to one
particular framework in the recent literature which we find very promising
and show in an example how it can be integrated into the overall model.

Our paper is mainly related to the literature on quantitative risk manage-
ment (McNeil et al. [2015]), coherent risk measures (Artzner et al. [1999]),
model risk (Studer [1997], Studer [1999], Breuer and Krenn [1999], Breuer
and Csiszár [2013], Breuer and Csiszár [2016]), fire sale modelling (Cont
and Schaanning [2016], Cont and Wagalath [2013], Cont and Wagalath
[2016], Braouezec and Wagalath [forthcoming]) and reverse stress testing
(Glassermann et al. [2014], Flood and Korenko [2015]).
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The literature on quantitative risk management is mainly focussed on
statistical risk measurement. There the question is: What is the probability of
big losses and how much capital is needed to make this probability sufficiently
small? By contrast, in a stress test we ask: Which are the scenarios that
lead to big losses? The answer to the stress testing question suggests risks
reducing actions. Our paper is related to the coherent risk measure literature
because our procedure of systematic scenario selection builds on a coherent
risk measure. For our approach to scenario selection we need the concept of
a generalized scenario, which builds on various contributions to the literature
on model risk. For the systemic risk part we build on recent contributions to
the literature on quantitative modeling of deleveraging processes and price
impact. In contrast to the reverse stress testing literature, which usually
starts from a given hypothetical loss and asks which are the most plausible
scenarios generating this loss, we look for the stress scenarios in a different
way.

Our paper is also related to the various efforts by stress testing practi-
cioners of developing modern stress testing frameworks, such as the Compre-
hensive Capital Analysis and Review Process (CCAR), the Dodd-Frank-Act-
Stress Tests (DFAST), the Stress tests of the European Banking authority
(EBA) or the stress testing framework of the Bank of England and other
major central banks. Our ideas on systematic and systemic stress tests are
compatible with all of these approaches.

The paper is organized as follows. Section 2 introduces the basic concepts
of stress testing and discusses a useful generalisation of the concept of
a scenario. This discussion plays an important role in Section 3 where
we describe our proposal for finding stress scenarios in a systematic way.
Section 4 discusses how we can combine our stress testing framework with
a loss evaluation which takes a key aspect of systemic risk - system wide
deleveraging - explicitly into account. Section 5 develops an example using
public bank exposure data from the EBA 2016 stress test as well as other
public data. The example is simplified in various dimensions with the main
aim of demonstrating the application of our ideas. Section 6 concludes.

2 Stress Testing: Basic Concepts

2.1 Stress Tests: Key concepts

A stress test is based on a model of future value changes of a given financial
portfolio.1 The key concepts of a stress testing model are: Risk factors,

1What the exact nature of the portfolio is in a given stress test depends on the context.
In a solvency stress test such as the EBA stress tests, this portfolio are the different assets
on a bank’s balance sheet. This is the context we will also use in our discussion. If the
context is a liquidity stress test, cash flows and liabilities as well as off-balance sheet items
will become also relevant.
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scenarios, portfolio valuation. We look at stress tests that have a simple
inter-temporal structure, with an observation period and a single future time
horizon up to which value changes in the portfolio are considered.

Risk factors are the determinants of the value of various positions in
the portfolio. For particular positions, such as exposures in securities the
choice of the risk factors is fairly obvious. Since securities are marked to
market their price changes are the obvious choice. Clearly in practice such a
mapping will be somewhat ambiguous. Sometimes an exact mapping between
a position and a market price change is not available, sometimes positions
are valued by models.

Since lending is a key business of banks, large parts of the bank balance
sheet are positions for which no market prices are available. The loan
portfolio is usually valued based on actuarial models, such as typical credit
risk models (see McNeil et al. [2015]). In these cases risk factors can be
either parameters of the actuarial model or underlying variables which are
assumed to determine the model parameters.

Scenarios postulate possible future developments of the banks, their port-
folios, and their environments. If these entities are modelled to depend on
more than one factor, scenarios specify more than one factor. If one wishes to
judge the plausibility of such scenarios the joint distribution of these factors
is relevant. Most traditional stress tests, however abstain from quantifying
the plausibility of scenarios.

Portfolio valuation is the third conceptual ingredient of a stress test.
The valuation functions and models are usually composed of various asset
pricing models of different complexity, for each of the portfolio positions.

In the remainder of this section we will discuss systematic selection of
stress scenarios. In order to do so, we will need a quantification of scenario
plausibilities and a concept of scenario versatile enough to handle market
and credit risk in their interaction.

2.2 Generalized Scenarios

The distinction between marketable and non-marketable positions is not
clear cut in practice. The distinction also does not work in terms of risk.
In general, credit risk and market risk interact and can not be separated.
The value of an instrument always carries some residual uncertainty. Even
in the seemingly certain situation of an instrument maturing exactly at the
future time horizon of the stress test, it might happen that the counterparty
does not fully fulfil its obligations or that the sell price achieved varies
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on different markets or that the sell price is subject to a bid-ask spread
expressing liquidity risk. For these reasons it is a blunt idealisation to assume
that a scenario specifies a unique portfolio value.

In the traditional framework a scenario is represented by a simultaneous
realisation of all risk factors and so determines the portfolio value uniquely. In
our more general concept we take scenarios to be possible future developments
of the banks, their portfolios, and their environments. They do not specify a
unique portfolio value but a new distribution of future portfolio values.

We model the risky value of a position or portfolio at some fixed time
horizon as

V (P0) = EP0(X),

where the payoff X is a random variable on some sample space and P0 is the
presently estimated risk factor distribution at the time horizon. EP0(X) is
the presently expected value of X under the distribution P0. The risk factor
distribution P0 is estimated in the same way as in any risk model, starting
from assumptions about the model family, the parameters of the distribution
are estimated from historical data.

A scenario is an alternative future development represented by a different
distribution Q changing the model-based value to

V (Q) = EQ(X)

This framework naturally accommodates not only market risk but also
credit risk, where alternative default probabilities, rating transition prob-
abilities or default correlations are considered. These are properties of
distributions.

Example: Credit risk of a loan Suppose the exposure to a particular
borrower has a face value f . Suppose there is one risk factor r representing
the repayment ability of the borrower at the maturity of the loan. Assume
the presently estimated distribution P0 of r is a standard normal distribution.
Let K denote the default threshold for the borrower. When the currently
estimated probability of default is p, K is chosen as K = Φ−1(p). Whenever
r falls below this threshold the borrower is insolvent and defaults, repaying
only f − lf . (Here l is the loss given default as a percentage of the face
value.) Then with respect to P0 we would value the loan according to the
expected value of its payoff X(r) = f − lf1(−∞,K)(r). A generalized scenario
is then an alternative distribution Q with respect to which we would take
the expectation of the payoff function.
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3 Systematic generalized stress scenarios: Improv-
ing Stress Scenario Selection

We call a stress test systematic if it provides a procedure for quantifying the
plausibility of scenarios and if it considers a complete set of scenarios, i.e.
all scenarios at or above a given plausibility threshold. In this sense current
stress testing practice is not systematic. It refrains from quantifying the
plausibility of scenarios. Since it only considers a baseline and one or two
adverse scenarios it also looks at a highly incomplete scenario set. The set is
incomplete because among a vast number of scenarios with equal plausibility
only two are chosen. We propose to do systematic selection of generalized
scenarios.

Breuer and Csiszár [2013] measure the plausibility of a generalized scenario
Q by its relative entropy with respect to some presently estimated distribution
P0, which could be interpreted as a prior distribution. (More generally,
one can use various f -divergences as measures of plausibility, see Breuer
and Csiszár [2016], Csiszár and Breuer [2018]). The presently estimated
distribution P0 often results from assumptions about a model class and a
parameter estimation procedure based on historical data. Distributions close
enough to P0 are plausible alternative scenarios. We admit as plausible
enough all distributions for which the relative entropy does not exceed some
threshold k. The relative entropy of a probability distributions Q with
respect to a presently estimated distribution P0 is defined as

D(Q||P0) :=

{ ∫
log dQ

dP0
(r)Q(dr) if Q� P0

+∞ if Q 6� P0

where Q� P0 denotes absolute continuity of the distribution Q with respect
to the distribution P0. Relative entropy can be interpreted to quantify
similarity of the distributions Q,P0 since D(Q||P0) ≥ 0 and D(Q||P0) = 0
only if P0 = Q.

The systematic stress test procedure searches for the worst expected
value of the portfolio valuation function among the sufficiently plausible
generalized scenearios:

inf
Q:D(Q||P0)≤k

EQ(X). (1)

The solution to this problem is a new distribution Q, which we call the worst
case distribution.

The procedure of determining the worst case distribution Q improves
robustness with respect to the choice of P0. The set {Q : D(Q||P0) ≤ k}
takes into account not just the risk factor distribution P0, which depends
on modelling assumptions and historical data, and which might be prone
to estimation errors. It also contains distributions with slightly different
parameter values (e.g. different covariance structure) and distributions
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from different model classes (e.g. t-distributions instead of normals). The
solution to problem (1) determines the worst case over all these alternative
distributions.

The parameter k is the “radius” of the set {Q : D(Q||P0) ≤ k}. The
larger we choose k, the larger the set of alternative distributions which we
are willing to consider in the worst case problem (1), and the lower will be
the worst portfolio value resulting in problem (1). The choice of k > 0 is
free like the choice of a confidence level (between 0 and 1) for Value at Risk
calculations. Instead of recommending general rules for the choice of k, we
propose to determine k from a benchmark, namely as the relative entropy of
the EBA stress scenario from the EBA baseline scenario.

A key tool to solve problem (1) is the G-function, defined as

G(X, θ2) := log

(∫
eθ2X(r)P0(dr)

)
, (2)

where θ2 is a negative real number. If the payoff function X is clear from
the context, we will simply write G(θ2).

The solution to Problem (1) has the typical form given below if the
following assumptions are satisfied:

(i) If ess inf(X) is finite, assume k is smaller than kmax := − log(P0({r :
X(r) = ess inf(X)})).

(ii) Assume θmin := inf{θ2 : G(θ2) < +∞} < 0,

(iii) If θmin, G(θmin), and G′(θmin) are all finite, assume k does not exceed
kmax := θminG

′(θmin)−G(θmin).

Problem (1) can also be solved explicitly in the pathological cases where one
or more of the three assumptions are violated. But this is not needed for the
present purpose.

Theorem 1 (Breuer and Csiszár [2013]). Under assumptions (i)-(iii) the
equation

θ2G
′(θ2)−G(θ2) = k (3)

has a unique negative solution θ2. The worst case distribution Q solving (1)
is the distribution with P0-density

dQ
dP0

(r) := eθ2X(r)−G(θ2). (4)

The minimal expected payoff achieved by the worst case distribution Q is

G′(θ2). (5)

The result provides a practical procedure for calculating MaxLoss in the
generic case, which is illustrated in Fig. 1:
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1. Calculate G(θ2) from (2). This involves the evaluation of an n-
dimensional integral.

2. Starting from the point (0,−k), lay a tangent to the curve G(θ2).

3. The worst expected payoff is given by the slope of the tangent.

4. The worst case distribution is the distribution with density (4), where
θ2 is the θ2-coordinate of the tangent point.

Figure 1: Illustration of Theorem 1: The supporting line has maximum slope
b = (k +G(θ2))/θ2 among all lines through (0,−k) that meet G. This slope is equal
to the solution of problem (1).

One possible way to choose k could be for instance to calculate the
relative entropy between an estimated current risk factor distribution and a
risk factor distribution estimated from times of crisis.

This framework and the procedure for identifying worst case distributions
(i.e. searching for worst case scenarios) naturally applies to market portfolios,
credit portfolios, and portfolios exposed to both market and credit risk. It
allows for a unified treatment of market and credit risk.

Example continued: Credit risk of a loan In this case, where X(r) =
f − lf1(−∞,K)(r) and p is the currently estimated probability of default, the
function G(θ2) in (2) equals

G(θ2) = log [p exp(θ2f(1− l)) + (1− p) exp(θ2f)] . (6)
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For a given k > 0, θ2 results from numerically solving eq. (3), which takes
the form

θ2
pf(1− l) exp(θ2f(1− l)) + (1− p)f exp(θ2f)

p exp(θ2f(1− l)) + (1− p) exp(θ2f)
(7)

− log [p exp(θ2f(1− l)) + (1− p) exp(θ2f)] = k (8)

for θ2. The worst expected payoff is

G′(θ2) =
pf(1− l) exp(θ2f(1− l)) + (1− p)f exp(θ2f)

p exp(θ2f(1− l)) + (1− p) exp(θ2f)
.

As a numerical example consider a loan with loss given default l = 0.5,
and an estimated probability of default p = 0.1. If the face value of the
exposure is f = 1, the expected payoff of this loan under the estimated
probability of default equals 0.95. For k = 0.1 the numerical solution to (3) is
θ2 = −2.27. The worst expected payoff at the plausibility level k = 0.1 equals
0.87 (compared to 0.95 under the reference default probability). Whereas
the reference payment ability distribution P0 results in the estimated default
probability of p = 0.1, the worst case payment ability distribution implies a
default probability of 0.257. (This is the probability mass of the worst case
distribution up to the threshold K = Φ−1(0.1) = −1.28.) The density of the
worst case distribution, given by (4), is plotted against the density of the
presently estimated distribution P0 in Fig. 2.

Figure 2: Density of presently estimated distribution P0 (blue) and worst case
distribution Q (yellow) of the repayment ability of the borrower.

In Section 5 we will use a credit risk model based on the same idea. But
there, several loans with different estimated PDs depend on the same risk
factor, so there will be several thresholds. Furthermore the loan portfolios
there depend on more than one risk factor, namely one for each sector.
Instead of Fig. 2 the worst case density looks as in Fig. 3.
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Why is systematic selection of generalized scenarios an improvement over
the current approach? The main advantage is that we have actually described
the most detrimental outcome, once we have agreed on the risk factors, the
plausibility threshold k and the payoff function according to which we rank
payoffs without discarding outcomes that are at least equally plausible. The
discussion about how to set k will raise the awareness about the plausibility
of stress scenarios we want to concentrate on. An advantage that comes as a
consequence is that the process of scenario selection will not only be more
systematic, it will also become less prone to political influence. We still need
a process that discusses where to set the plausibility threshold k. But once
this decision is taken there will be no further meddling with the scenarios.
Finally, thinking in generalized scenarios will allow for a consistent and easy
joint treatment of market and credit risk as well as their interaction at a
common time horizon.

4 Taking into account systemic risk: Improving
loss assessment

Systemic risk stems from the interaction of banks. When interactions are
taken into account, losses are often substantially amplified as compared to
an analysis based exclusively on exogenous sources of risk. In his analysis of
the great financial crisis Hellwig [2009] describes the repeated (huge) errors
made by the authorities in estimating the losses that might be faced as the
crisis unfolded. These errors had their root in underestimating the impacts
of system wide deleveraging by banks.

For incorporating such amplifying effects on losses in a tractable, empirical
way we would like to draw on recent work by Cont and Schaanning [2016]2

who analyse the deleveraging dynamics of a banking system in a practical
yet credible way.

We believe that this kind of analysis could be integrated into an otherwise
standard stress testing framework (with or without generalized scenarios) to
think about how loss assumptions might be amplified by the banking system.

The main additional ingredient in a deleveraging model is to add some
assumptions on bank behavior and a model of price impact. Assuming that
banks have an explicitly or implicity given threshold of a maximal tolerable
leverage which they need to maintain for unimpaired operations, we can
ask for each exogenous loss whether this could force the bank to sell some
part of its marketable assets to restore its acceptable leverage. Assuming
that asset sales will occur proportionally accross different marketable asset
classes, we can draw on models of price impact from the market micro

2See also Duarte and Eisenbach [2013] and Greenwood et al. [2015]. We would also like
to point out the paper by Braouezec and Wagalath [forthcoming], who analyse the single
bank case.
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structure literature (see Kyle [1985], Obizhaeva [2012], Beritsmas and Lo
[1998], Almgren and Chriss [2000], Cont et al. [2014]) to gauge potential
drops in the value of marketable assets which will perhaps trigger further
rounds of sales.

Price impact modelling assumes for each asset class in the portfolio an
impact function Ψ, which maps liquidation amounts q into a relative price
change of the asset class. The impact function is assumed to be increasing,
concave and satisfying Ψ(0) = 0. A common specification is a linear impact
function of the form

Ψ(q) =
q

D
with D = c

ADV

σ

where ADV is average daily volume of the asset traded and σ is the volatility
of the asset price. For a given liquidation horizon τ , D has to be multiplied
by
√
τ .3 Thus the price impact in an asset class is large when average daily

turnover is low, volatility is high and the liquidation horizon is short.
This concept can be used in a stress test to assess potential amplification

effects of losses: When an institution has to liquidate an amount q of a
particular asset with a current price S, this will depress the asset price to
S′ = S(1−Ψ(q)). This in turn will lower the value of all marketable assets of
this class and perhaps induce further sales. Note that this does not require
a fully fledged equilibrium analysis. The modeller can choose how many
potential rounds of deleveraging he would like to consider. We refer for all
details of the fire sale models to the paper of Cont and Schaanning [2016].

5 An EBA-based example

We now apply our ideas to a real world data set, using data from the EBA
stress tests and other sources.

5.1 Systematic scenario search

We perform a systematic stress test for a subset of the EBA risk factors,
namely the exposure of the 51 EBA banks to the residential Spanish and
Italian real estate sectors. (This application is just an example, our methods
work for other, larger subsets of risk factors.)

In our model of credit risk for residential mortgages, which is a firm value
or threshold model (see McNeil et al. [2015]), we choose house price indices
from the the property price statistics of the BIS4 as risk factors. Clearly in
reality house prices are not the only (often even not the decisive) risk factors
for credit risk of residential exposures. A realistic model approximation to

3A thorough discussion of how these formulas are derived and when they can be
meaningfully applied, see Cont et al. [2014].

4See https://www.bis.org/statistics/pp.htm

13



the credit risk of European and international residential exposures taking
into account the institutional heterogeneity of mortgage lending, would need
a separate study.

The nominal exposures of each of the 51 EBA banks to the two risk factors
are from the EBA stress test results and followed by the same processing as
in Cont and Schaanning [2016] in order to handle overlaps and ensure the
balance sheet identities. The structure of the total balance sheet of the 51
EBA banks is given in Table 1.

The data allow for the construction of a stylised balance sheet for each of
the 51 banks included in the EBA sample. Assets are split in assets that can
be sold on markets, like sovereign and corporate bonds and assets that are not
(or not easily) marketable, like loans. The distinction between non-marketable
and marketable assets plays an important role in fire sales situations. Fig. 7
shows the share of marketable assets in total assets across the 51 EBA banks.
For each bank the rest of the total assets are non-marketable.

Within these categories assets with exposure to a particular country are
considered as one asset class. So we have, for instance, for each of the 51
banks residential exposures in Austria, Belgium etc. and in the same way
for all other assets. In this way we construct in total 122 asset classes in
marketable assets, covering country exposures around the world. These are
in our case corporate and government bonds. We have 123 non-marketable
asset classes, residential lending to households and loans to enterprises. In
addition we add a residual position of exposures to the non-marketable assets.
The numbers shown in Table 1 are the numbers from the EBA data, where
the residual category is added to the non-marketable assets. The numbers
show the aggregates across all asset classes and across all banks.5

Risk factors and portfolio valuation function In our numerical ex-
ample we focus on a systematic stress of N = 2 sectors, namely the Spanish
and Italian residential property sectors. So for the two risk factors we choose
rES , the Spanish residential property price index of the BIS, and rIT the
corresponding index for Italy.

For the EBA stress scenario, and for the worst case scenario at the same
plausibility level as the EBA stress scenario, the estimated probabilities of
default of bank exposures in the two sectors (denoted further down by pin)
are backed out from the EBA data on loan portfolio impairments: Given the
nominal exposure of each bank in the two sectors, an estimated probability
of default can be backed out from the impairment assuming a loss given
default ratio l = 45%. The results are displayed in Fig. 4: For all banks and

5The EBA data contain some overlaps which prevent that individual positions add up
exactly to the reported totals. This requires some adjustments and therefore lead to a
residual position to guarantee balance sheet identity. Our adjustments follow the example
of Cont and Schaanning [2016].
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Aggregate balance sheet of the 51 EBA banks

Assets Liabilities

Maketable assets e7270 Billion Debt e24951 Billion
- Corporate bonds AA

...
- Corporate bonds ZZ
- Sovereign bonds AA

...
- Sovereign bonds ZZ
Non-marketable assets e19049 Billion
- Residential exposures AA

...
- Residential exposures ZZ
- Commercial exposures AA

...
- Commercial exposures ZZ Equity e1368 Billion

Total e26319 Billion Total e26319 Billion

Table 1: A stylized bank balance sheet. Marketable assets can be valued using
market prices, non-marketable assets can be valued only indirectly using an actuarial
model. The numbers are aggregates over all 51 banks from the EBA data.
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for both sectors, PDs in the worst case scenario are higher than PDs in the
EBA stress scenario.

The loan of bank i to sector n, whose face value is denoted by fin, defaults
if his risk factor rn drops below a default threshold Kin = Φ−1n (pin), where
Φ−1n is the inverse of the marginal distribution of rn derived by integrating
the density of N(µ,Σ) over the variables r1, . . . , rn−1, rn+1, . . . , rN . For the
two sectors the estimates of Σ and µ from the appropriate BIS time series
are Σ = ((16.71, 3.20), (3.20, 2.23)) and µ = (241.3, 155.1). The time window
we used was 1971Q1–2017Q2.

The final payoff to bank i is

Xi(r1, . . . , rN ) =
N∑
n=1

fin
(
1− l1(−∞,Kin)(rn)

)
. (9)

The final value of loans given by the total banking system is

X(r1, . . . , rN ) =

I∑
i=1

Xi(r1, . . . , rN ). (10)

The final value of all loans given by the total banking system is the objective
function which determines the worst case distribution for the system. For-
mally it would be possible to take other objective functions, as for example
the number of banks defaulting. (Although it makes a difference whether a
small bank defaults or a large one.) Alternatively, one could take as objective
function the asset value destroyed by fire sales. (But this reflects only losses
in marketable securities.) Or, one could take as objective function the total
value of the banking system after fire sales. This would be conceptually most
gratifying, but the solution is a mathematical challenge.

To get the worst expected value of the loan portfolio at a plausibility level
k, enter X(r1, . . . , rN ) of (10) into (3) to get the G-function, solve equation
(3) to get θ2. The worst expected value of the banking system is G′(θ2), and
the density of the worst case distribution of the risk factors r1, . . . , rN is
given by (4).

EBA stress scenario versus Worst case stress scenario Fig. 4 shows
the probabilities of default for residential exposures in Spain (left) and
residential exposures in Italy (right) for all 51 EBA banks. The PDs in
the EBA stress scenario are shown as red dots, the PDs in the Worst Case
scenario of equal plausibility are shown in blue dots. For all banks and for
both sectors, PDs in the worst case scenario are higher than PDs in the EBA
stress scenario, although the two scenarios have the same plausibility with
respect to the EBA baseline scenario. (The plausibility of the EBA stress
scenario with respect to the EBA baseline scenario equals k = 0.04. The
procedure of this calculation is described in Appendix A.
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Figure 3: Worst case distribution (left) and presently estimated distribution (right)
of the system loan portfolio. Sector payment abilities r1, r2 below the default thresholds
Kin get higher weight than in the normal presently estimated distribution.

Figure 4: Probabilities of default for residential exposures in Spain (left) and
residential exposures in Italy (right) for all 51 EBA banks. The PDs in the EBA
stress scenario are shown as red dots, the PDs in the Worst Case scenario of equal
plausibility are shown in blue dots. For all banks and for both sectors, PDs in the
worst case scenario are higher than PDs in the EBA stress scenario.
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Figure 5: Shares of losses that come from the initial shock and from subsequent
fire sales, for each of the 51 EBA banks. We see that fire sale losses are potentially
important.

5.2 Fire sales

In the last part we ask whether the addition of fire sales would significantly
amplify the losses in the EBA-scenario as well as in the worst case scenario.
While the example is very stylised and not particularly realistic we hope that
it illustrates how to work with generalized scenarios and to give an impression
about the differences in quantitative effects we get from traditional versus
worst case scenario search. A first impression of the potential importance of
deleveraging is conveyed by Fig. 5.

Initial Exposures To get an impression of the data we look in Fig. 6
at the distribution of leverage among the 51 banks in the EBA dataset.
Leverage is defined here as the ratio of the value of total (marketable and
non-marketable assets over Tier 1 capital.)

The leverage distribution shows that on average banks in the sample are
at around a value of Tier 1 capital of about 5% of total assets, with a few
banks with worse and quite a number of banks with a significantly better
capitalisation.

Figure 7 shows the distribution of the aggregate values over asset classes
of marketable and non-marketable assets as percentage of total assets across
the 51 banks. This shows that in terms of asset classes, lending to enterprises
and households (the main non-marketable assets) is the most important
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Figure 6: Distribution of Leverage across the 51 Banks in the EBA sample. The
average leverage ratio is indicated by a dotted red line. It is near a value of 20 or 5 %
Tier 1 capital.

business line. Holdings of marketable assets are for most banks substantially
lower.

Deleveraging and Loss Amplification We finally ask, whether losses
coming from expected defaults on residential exposures in Spain and Italy
might induce deleveraging and price impacts. The answer of course depends
on a number of assumptions about bank deleveraging behavior and the
corresponding price impact. We use the Cont Schaanning model (Cont and
Schaanning [2016]) and their data on average daily volumes of government
and corporate bonds as well as the volatility of their respective price indices.

If the maximum leverage a bank is willing to tolerate before selling any
of its marketable assets is high enough, there will be no deleveraging. In
Cont and Schaanning [2016] the maximum leverage ratio is assumed to be
33 and a target ratio of 32, which corresponds to a Tier 1 capital of about
3%. At this critical level, there is one bank in the sample which would even
without a shock sell a certain amount of its marketable assets to come back
to target. Otherwise in this parametrisation, neither the EBA stress scenario
nor the worst case scenario would kick off a deleveraging process that reaches
beyond the bank which was initially over-leveraged.

When the maximum leverage is a bit tighter, say at 4% of Tier 1 capital,
and the target leverage is set to 95% of the maximum leverage, the effects
would look differently. At this tighter target, fire sales would occur for more
than ten banks. This can be seen in Fig. 8.
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Figure 7: Share of marketable assets in total assets across the 51 EBA banks. For
each bank the rest of the total assets are non-marketable.

Figure 8: Looking at 10 rounds of deleveraging we see that initially there is a fire
sale by 3 banks, which rises to 5 banks in round 3 and then even further to 12 and 15
banks. Then some banks manage to stabilise while 12 banks even after 10 rounds of
deleveraging have not managed to restore their target.
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When we look at losses it matters a great deal whether we look at
potential deleveraging spirals or not. In Fig. 5 we compare the shares of
total losses from the initial stress scenario plus the potential deleveraging
process and compare the share these losses have in total losses.

We see that, if a deleveraging process occurs, the share in losses from
deleveraging is for most banks higher than losses from the initial shock. Of
course this is conditional on the fact that deleveraging occurs in the first
place. We saw that with a leverage threshold of 25 we can get already
significant deleveraging losses. Taking fire selling into account is potentially
important for the evaluation of losses.

To get an impression of what deleveraging does to the price indices of
the 122 marketable asset classes considered in our example we look at a
histogram of changes (drops) in the Index value. This is shown in Fig. 9.

Figure 9: Price changes in marketable asset classes triggered by deleveraging, .
Most asset classes show little price changes, while there are a few with extreme drops.

Overall our example suggests that the analysis of deleveraging or second
round effects might be very important in the assessment of losses. The
question of which is the most useful and most credible quantitative model
of deleveraging is at the moment still very much open. The price impact
model we use here draws on the market micro structure literature, where it
was mainly used in empirical analysis of order book dynamics. Under which
exact circumstances these methods fit very well to the context of a stress
test needs further research.
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6 Conclusions

The methodology of current stress testing is problematic both in the way
stress scenarios are chosen and in the way bank losses are evaluated. While
most research resources in stress testing over the last ten years have been
invested in constructing very detailed models of portfolio loss functions, and
in constructing statistical-econometric models that translate very broadly
formulated macroeconomic scenarios to the actual risk parameters of port-
folios, scenario selection and inclusion of systemic risk has been somewhat
neglected.

Our paper calls for changing the focus in stress testing on systematic
scenario selection and on the consideration of loss amplification by systemic
risk. The reason is that otherwise, stress tests will be weak in answering the
key questions: “Which scenarios lead to big losses?” and “How big are the
worst losses?”.

Specifically we propose to work with generalized scenarios. We argue that
it is useful to think about scenarios as distributions rather than realisations.
This allows for an integrated analysis of market and credit risk at a common
time horizon. Systematic scenario selection is achieved by an appropriate
form of worst case search over plausibility domains. This method finds among
all equally plausible scenarios the scenario leading to the worst expected loss
for any given portfolio.

For making stress tests more systemic, we propose an integration of
recent results on the quantitative modelling of deleveraging processes with
our approach to systematic scenario search. Rather than going for a fully
fledged equilibrium analysis and sophisticated behavioural modelling, we
advocate an approach that makes use of describing the very limited options
a bank has in distress at a short time horizon plus tools from market micro
structure literature to assess price impact.

We believe that our proposals can be implemented in a fairly straightfor-
ward way without drawing on exotic or new data sources. Our example gives
ideas about how such an approach might work in a more or less traditional
top down stress testing setup. We hope that our ideas provide foundations
for future stress tests to become more systematic and systemic.
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A How plausible is the EBA stress scenario rela-
tive to the EBA baseline scenario?

For banks i = 1, . . . , I and sectors n = 1, . . . N the exposures fin are given.
Also for the EBA baseline scenario (call it Q) and the EBA stress scenario
(call it P ) we are given the PDs of the exposure of bank i in sector n:
pdQin, pd

P
in. Also given are time series for the sector values.

1. For both scenarios P,Q, construct the marginals of N -dimensional
distributions described by the differences qni , p

n
i of ordered PDs (so

that
∑I

i=0 p
n
i = 1,

∑I
i=0 q

n
i = 1 for all n).

2. For the baseline scenario Q calculate the N -dimensional distribution
Q∗ from the given marginals qn by taking the Maximum Entropy
distribution with respect to the given marginals, see Cover and Thomas
[2006, Chap. 12].
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3. For the stress scenario P , from the marginals pn calculate the N -
dimensional distribution P ∗ having minimal relative entropy with
respect to Q∗.

4. We take the plausibility of the EBA stress scenario with respect to the
EBA baseline scenario to be the relative entropy D(P ∗||Q∗).
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