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1 Introduction
1.1 Motivation
The financial crisis has revealed the 
danger of systemic risk due to contagion 
effects given the interconnectedness of 
modern banking systems. Identifying 
systemically important banks has since 
become one of the key objectives of 
 systemic risk assessment and a neces-
sary precondition for the formulation 
of macroprudential policy. Systemically 
important banks can be identified in 
many different ways. We would like to 

contribute to this important discussion 
by applying techniques from network 
economics.

In general, network analysis requires 
two input arguments. First, it takes a 
network, which could either be given 
or derived through a network formation 
process. Second, each network analysis 
needs an objective. In our paper we 
consider the interbank lending network 
as given and leave the theory on net-
work formation aside, since the Austrian 
interbank lending relationships are the 
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very network we supervise.2 We view 
the interbank lending market as a net-
work where each participating bank is a 
node and each credit a link. 

The objective of our paper is ana-
lyzing one important contagion mecha-
nism within this network, namely 
counterparty credit risk associated 
with interbank lending. Ex ante it is 
unknown whether difficulties at even a 
relatively small (but interconnected) 
institution might trigger problems at 
another bank. In the context of macro-
prudential analysis such an institution 
could be considered as a systemically 
important bank (also known as a key 
player in network economics). Specifi-
cally, we analyze two variants of (hypo-
thetical) contagious default for the 
 Austrian network of interbank lending 
relationships. First, we study a bank’s 
contagiousness in terms of the share of 
total banking assets represented by 
other banks that it will cause to default 
given its own default. Second we study 
a bank’s vulnerability in terms of the vulnerability in terms of the vulnerability
number of banks by which it is brought 
down if defaults cascade through the 
banking sector. 

In the remainder of the paper we 
try to identify key network properties 
that influence our two variants of 
 contagious default. Our main motiva-
tion is finding out whether simulated 
contagiousness and vulnerability is driven vulnerability is driven vulnerability
by (i) banks’ idiosyncratic characteristics 
(i.e. a thin capital buffer) or (ii) net-
work effects/positions, or (iii) by both. 

To this end we estimate panel data 
models that exploit network indicators 
to predict potential default cascades 
 following individual bank failures while 
we control for idiosyncratic variables 

(i.e. the traditional measures of risk-
bearing capacity like capitalization ratios 
etc.). If supervisors are able to identify 
network indicators that add signifi-
cantly to the analysis of these models, 
macroprudential policy will be able to 
(i) analyze the characteristics/drivers 
of individual indicators to get a better 
understanding of default dynamics and 
(ii) potentially target selected variables 
to address contagiousness and contagiousness and contagiousness vulnerability
in the interbank market “indirectly.” 
Our results should therefore provide 
potential novel means for policymakers 
to design and/or complement macro-
prudential tools.

1.2 Related Literature

To the best of our knowledge we are 
the first to apply panel estimation 
 techniques to interbank liability net-
works to explain simulated contagious 
defaults by peer effects for a dynami-
cally developing network over time. 
The analysis of network effects is 
not new to other economics fields. 
 Particularly relevant for our paper is 
the work that followed Furfine’s (1999a 
and 1999b) seminal contribution in 
which he tried to address the shortage 
of bilateral exposure data by extracting 
such information from transaction 
data. Based on his algorithm, payment 
system researchers, in particular a 
community around the Bank of Finland, 
started to analyze interbank lending 
exposures.3 Soramäki et al. (2007), 
who also applied techniques from the 
social sciences and physics, were 
 another important inspiration for our 
work.4 Recently, there has been a 
 significant interest in directly reported 
bilateral exposure data as well as 

2 Moreover, shaping interbank lending relationships in a risk-optimal fashion while capturing all the strategic 
details is still in its academic infancy. See Cohen-Cole et al. (2010) for a first promising attempt.

3 For an overview of their work see Leinonen (2007 and 2009).
4 They analyze payments transferred between U.S. commercial banks over the Fedwire Funds Service.
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data extracted from payment systems 
data.5

In financial network studies, the 
closest work from a methodological 
perspective is Schmitz and Puhr’s 
(2009) investigation of structure and 
stability for the Austrian large value 
real-time gross settlement system 
 ARTIS. In this paper the authors also 
used panel data analysis to test the 
 predictive power of structure for liquid-
ity shortages in the event of (hypotheti-
cal) operational outages. With regard 
to interbank lending, the two closest 
related articles are on the Austrian and 
German interbank market. The Aus-
trian interbank lending market has 
been investigated by Boss et al. (2004), 
and we draw on a similar dataset as 
well as from the inspiration of their 
seminal work. The German interbank 
market has been analyzed by Upper and 
Worms (2004). They show that the 
risk – notwithstanding the shortcoming 
of all aforementioned papers including 
our own work that suffers from a rather 
mechanical integration of the interbank 
lending channels – is material enough 
so that the failure of a single bank could 
lead to the failure of up to 15% of the 
entire banking system in terms of total 
assets. Beyond the OeNB’s Systemic 
Risk Monitor (SRM) it seems appropri-
ate to mention the Bank of England’s 
RAMSI6 that also includes the Eisen-
berg and Noe (2001) network model. 

The remainder of the paper is struc-
tured as follows: section 2 covers our 
data source, section 3 the tools and 
methodologies employed. In section 4 
we present our results before we con-
clude in section 5.

2 Data7 
Our main data source is Austria’s 
 central credit registry, which covers  
 individual credit risk-sensitive instru-
ments with a volume of more than 
EUR 350,000 for each Austrian bank 
on an unconsolidated level on a cus-
tomer-by-customer basis. Data available 
from the registry include the outstand-
ing volume of securitized and nonsecu-
ritized loans, guarantees and commit-
ments as well as respective collaterals, 
specific provisions and the internal 
 rating of the customers’ credit quality. 
Moreover, the data source also covers 
interbank loans, the focus of our inves-
tigation, with the limitation that short-
term interbank transactions (with a 
maturity of less than a month) have 
been subject to reporting requirements 
only since 2008. Hence, we are con-
strained in our analysis to quarterly 
 observations from December 2008 to 
December 2011.8 While exposures are 
reported on a monthly basis, we use 
 additional data sources for the hypo-
thetical default simulations, i.e. the 
capital positions of each bank at each 
point in time, which are available on 
a quarterly basis only. Finally, it is 
 important to point out that our panel 
data set is balanced.9

3 Methodology

The following section is divided into 
three subsections. First, we explain our 
use of network indicators with a 
 particular focus on their usability for 
 financial systems/lending relationships 
amongst banks. Second, we describe 
briefly the tools/methodology employed 
to run hypothetical default simulations. 

5 See for example Cont et al. (2010) or Jaramillo et al. (2012).
6 For a description of RAMSI refer to Alessandri et al. (2009).
7 For a detailed description of the data see Boss et al. (2006a).
8 Given the reporting threshold of EUR 350,000, we are confident to cover the entire interbank market.
9 No default simulation results are available for Q2 2010, instead of 13 we have to contend with 12 observations.
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Third and finally, we describe the panel 
data regression techniques used to ana-
lyze the potential predictive power of 
structural patterns (i.e. network indi-
cators) for stability (i.e. simulated con-
tagious defaults).

3.1 Network Indicators10

We calculated approximately 100 dif-
ferent candidate network indicators for 
analysis. However, in the following 
 section we describe a noteworthy sub-
sample which at a later stage is either (i) 
used to describe the Austrian interbank 
market as a network (see section 4.1) 
or (ii) used to explain contagion via 
structural indicators (4.3). 

Degree

The degree khkhk  of node h is measured by 
the number of links originating (out-
degree) or terminating (indegree) at node 
h. In- and outdegree will match each 
other in an undirected network. For the 
interbank liability network, these links
reflect the number of loans granted 
(outdegree) or received (indegree). A high 
degree therefore indicates that an insti-
tution is very active in the interbank 
market. Traditional network analysis – 
within and outside the scope of finan-
cial systems – has often focused on 
 degree distribution, because many real-
life networks show properties far from 
what could be expected from random 
networks.11

Density

The connectivity of node h is its degree 
over the number of nodes n. On a net-
work level, average connectivity, or density,density,density
is defined by the number of actual 
 (directed) links m over the number of 

possible (directed) links n(n–1). For the 
interbank liability network, a high den-
sity therefore reflects a very active inter-
bank market with many lending rela-
tionships amongst participants. 

Betweenness centrality

The betweenness centrality CBCBC (h) of node of node of h
provides a measure of how many shortest
paths dijdijd  pass through node ij pass through node ij h. Let sij

(h) be 
the number of shortest paths between all 
pairs of nodes i,j that pass through the i,j that pass through the i,j
node h, and let sij be the number of all ij be the number of all ij
shortest paths between all pairs of nodes
i,j then:i,j then:i,j

CB h( ) =
sij h( )
sijh≠i≠ j

∑

In the context of the interbank liability 
network, betweenness centrality provides betweenness centrality provides betweenness centrality
a measure of centrality in the sense that 
many of the shortest paths contain only 
central nodes. As the likelihood of 
 centrality increases with the number of 
interbank relations, we expect larger, 
more important – in a systemic sense – 
institutions to rank high. This should 
be particularly true for a tiered banking 
system, where often the only “entry 
point” of the shortest paths to a cluster 
runs through the apex institution of 
that very cluster (comparable to a tradi-
tional hub-and-spoke structure).

Katz (status) centrality12

For our purposes the Katz centrality 
of a bank describes how important a 
bank is by relating it to the importance 
of other banks from which it borrows. 
The method is self-referential and 
also takes into account different link 

10 Where possible we follow the notation of Albert and Barabási (2002).
11 See for example Dorogovtsev et al. (2000) and Albert and Barabási (2002).
12 See Katz (1953).
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strength (i.e. loan size). It is formally 
 defined as

C αKatz (A )i
∞

( ) =
k = 1

k k

ji

∞

j = 1

where A stands for the adjacency matrix 
and α13 for attenuation factor. Of all 
centrality measures it is our preferred 
indicator in an interbank network 
context (see section 4.3.1 for a detailed 
discussion).

Clustering coefficient

The clustering coefficient Cc(h) of an 
 individual node h with khkhk  neighbors 
 measures how well the latter are con-
nected among each other.14 The num-
ber of potential links between the khkhk
neighbors is kh kh k (kh (kh (k – 1) / 2. Let the actual 
number of nodes between them be EhEhE
so that:

CC =
Eh

kh kh −1( ) / 2
.

For the interbank liability network, the 
clustering coefficient provides a measure 
of connectedness of the neighboring 
banks; i.e. neighboring banks that share 
mutual relations are more likely to 
share the burden of a potential default 
and are at the same time more likely to 
suffer from contagion. 

Clustering

Clustering – as opposed to the clustering
coefficient – is not a network indicator 
but used to identify community struc-

tures within a given network with the 
aim to find members that “belong 
 together.” This can be achieved by 
 various methods. The one employed in 
this paper builds on optimizing modula-
rity, where, for a given division of the 
network’s nodes, modularity reflects a nodes, modularity reflects a nodes, modularity
high concentration of links between a 
cluster’s nodes compared to a random 
distribution of links between all nodes
regardless of clusters.15 With regard to 
interbank liability matrices in general, 
and those of tiered banking systems 
in particular, cluster analysis aims to 
 address/analyze the historically estab-
lished structure of a banking system. 

K-cores 

K-cores are another means of identifying 
community structures within a given 
network, in this case communities of 
“importance.” A k-core is a subnetwork 
of a given network where each node has 
at least a value of k in the respective k in the respective k
property under investigation (usually a 
degree of k).k).k 16  In the context of inter-
bank networks, this allows to sample 
the core of the network, i.e. the highly 
connected institutions according to a 
defined threshold.17

3.2 Default Simulations

The following section explains the 
tools/methodology employed to run a 
hypothetical default algorithm to simu-
late hypothetical contagion effects 
within the Austrian banking system. 
To generate the underlying data, we 
used the OeNB’s Systemic Risk Moni-
tor (SRM).18 One of the key assets 
of the SRM is that it links, amongst 

13 This factor has been set to 1/(1+min(max(indegree, outdegree)) to ensure convergence of the infinite series.
14 See Watts and Strogatz (1998).
15 See Newman et al. (2006).
16 See Seidman (1983) and Batagelj and Zaveršnik (2002).
17 An illustrative example is included in chapter 4.3.1.
18 See Boss et al. (2006a and 2006b).
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others, Austria’s central credit registry 
data (described in section 2) with more 
traditional supervisory reporting data 
(e.g. capital positions), thus providing 
an integrated view of various data 
sources and different risk categories. 
The SRM model also includes an assess-
ment of contagion risk through the 
 interbank market.

In greater detail, the data generated 
by the SRM comprise a set of N = {1,…,n}
banks. Each bank is characterized by 
an exogenously given value of equity 
ei net of interbank positions, and the 
network is represented as an n×n nomi-
nal liability matrix L, where Li j stands i j stands i j
for the liability of bank i to bank j.19

Each interbank lending network is thus 
a pair (L,e).20 The SRM also runs Elsinger 
et al.’s (2006)  implementation of the 
Eisenberg Noe (2001) hypothetical net-
work clearing algorithm and the hypo-
thetical default simulations for each 
bank at each  quarter. Using this algo-
rithm we construct the dependent 
 variables of our analysis. 

First, we look at contagiousness, cal-
culating for each time period t and t and t
for each bank i in our sample the 
 number of banks that are brought down 
by a fundamental default of bank i.
 Second, the vulnerability of bank vulnerability of bank vulnerability i
 reflects the number of banks (relative 
to its outdegree)21 whose fundamental 
default induces bank i to default as 

well. In our context a fundamental 
default means that a bank cannot repay 
any of its obligations.22 Except for the 
initial exogenous default, all other 
 induced defaults need not be funda-
mental. We assume an induced default,
i.e. one that occurs due to contagion, 
if the capital adequacy ratio (CAR) falls 
below 2%. 

The hypothetical default algorithm 
has the following structure. For each 
period t and each bank t and each bank t i we assume a 
fundamental default to happen, subject 
to the assumption that all other pay-
ments are served. If no other bank 
 defaults in turn, then the algorithm is 
terminated. However, if another bank 
defaults as well then the algorithm 
 proceeds, subject to the adjusted 
 assumption that all liabilities are served 
proportionally.23 Subsequently, the al-
gorithm either stops if no new defaults 
occur or triggers a new clearing round 
if further defaults cause other banks 
to fail to meet some of their liabilities. 
The algorithm stops after n rounds at 
the most. Thus, the resulting contagi-
ousness of bank iof bank iof bank  at period t reflects t reflects t
the number of sequential defaults of 
the clearing algorithm, whereas the 
vulnerability of bank vulnerability of bank vulnerability i is the result of all 
n-clearing algorithm sequences for each 
bank j for periodj for periodj  t; i.e. it simply counts 
the number of sequential defaults of 
bank ibank ibank .

19 For economic and technical reasons we assume that L
i j
 ≥ 0 and L

i i
= 0. This means that nominal liabilities are 

defined to be positive without loss of generality and that a bank cannot lend to itself. Intragroup transactions are 
j

defined to be positive without loss of generality and that a bank cannot lend to itself. Intragroup transactions are 
j

not excluded since we look at unconsolidated Austrian banks.
20 The conceptual framework of the interbank market network model is based on Elsinger et al. (2006). It is an 

extended version of the network model of Eisenberg and Noe (2001). We refer to these papers for a more detailed 
description of a financial network.

21 A bank can be vulnerable to the default of more banks than its outdegree, i.e. immediate neighbors, so this 
procedure can be understood as a proportional normalization.

22 In general different degrees of exogenous defaults could be analyzed. A fundamental default is the most extreme 
but straightforward assumption as any kind of proportional repayment of liabilities would create room for 
additional interpretation.

23 It is possible to include levels of seniority into the liability structure as well.
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3.3 Panel Data Regressions
In this section we outline the econo-
metric theory and estimation proce-
dure behind the models to explain con-
tagiousness and vulnerability. Consider-
ing the structure of the data (banks, 
time periods) we choose a panel model 
approach to link the dependent variables 
to independent (network and balance 
sheet) indicators. For both dependent 
variables we follow a standard test pro-
cedure to select the statistically best 
model. We consider the following 
model:24

yi , t = αi + x T
i , t β + ui , t β + ui , t i , t

where y represents the endogenous 
variables and x the exogenous variables. 
We assume the same slope coefficients 
of the independent variables (βi = β) as 
we do not observe enough time periods 
to produce efficiently estimated coeffi-
cients. Following the standard litera-
ture on static panel econometrics we 
are left with two options concerning αi: 
fixed effects or random effects. In con-
trast to a fixed effects model the random 
effects model implies E [ αi xi , t ] = 0. So 
there is no correlation between the 
 individual specific effect and all other 
independent variables. A Hausman test 
is used for each panel model in section 
4.3 to find the most appropriate 
model.25

4 Results26 
4.1  Structure: The Austrian 

 Interbank Market as a Network
A lot has been written about interbank 
lending relationships. To the best of our 
knowledge, however, all authors who 
have come before us27 have disregarded 
stable structural features in their attempt 
to describe the banking system with 
network indicators. We will proceed 
likewise in subsection 4.1.1, but aim to 
add to this analysis in subsection 4.1.2 
by discussing empirically identified clus-
ters in our dataset and relating them to 
the historically established structure of 
the Austrian banking system.

4.1.1 Network Properties

In this subsection we use our balanced 
panel of 749 banks, for which we have 
quarterly observations from end-2008 
to end-2011.28 We will discuss averages 
and distributions of the network indica-
tors presented in section 2.1.

Based on one of the most prominent 
network indicators, degree, we can al-
ready establish one of the main features 
of the Austrian interbank network that 
has its origin in the historically grown 
Austrian banking system: a few impor-
tant central nodes and many smaller 
banks; i.e. the tiered structure of the 
Austrian banking system, due to the 
importance of the savings and coopera-
tive banking sectors,29 is reflected in 

24 Given a set of independent variables we test whether the data can be pooled. Usually the poolability hypothesis is 
strongly rejected as panel data allow to control for time-invariant variables that cannot be observed or measured. 
In the context of finance these could be time invariant bank-specific characteristics such as the underlying business 
model.

25 In the presence of heteroskedasticity we use robust standard errors in the various panel estimations. Therefore we 
need to use a more general Hausman-type test to choose between fixed and random effect models. See Arellano 
(1993) for more details and Schaffer and Stillman (2006) for a STATA software implementation.

26 Networks in this chapter were visualized using Pajek and Visone.
27 From Boss et al. and Upper and Worms (both 2004) to Cont et al. (2010) and Jaramillio et al. (2012).
28 With the exception of Q2 2010, where no data are available.
29 In Austria we have got one savings bank sector (“Sparkassen”) and two cooperative banking sectors (”) and two cooperative banking sectors (” “Raiffeisen“Raiffeisen“ ”

and “Volksbanken”).”).”
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the distribution of outdegrees (see chart 1) outdegrees (see chart 1) outdegrees
and indegrees (see chart 2).30

Both charts show the mean and 
 interquartile ranges, with the mean 
most of the time above the 3rd quartile.31

Interestingly enough, the “lender”-indi-
cator outdegree is significantly more 
concentrated than the “borrower”-indi-

cator indegree. Moreover, although 
the maximum in both cases is off 
the scale, it is on average above 400 
for the former and less than 200 for 
the latter.32 Finally, a look at the devel-
opment over time reveals that the 
mean degree (both out- and indegree) as 
well as the two middle quartiles de-
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Interquartile Ranges: Outdegree

Chart 1

Source: OeNB calculations.

Note: The results are based on a sample of 749 Austrian banks from end-2008 to end-2011 (with the exception of Q2 2010 for which no data were 
available).

Interquartile range Median Mean Minimum Maximum (right-hand scale) 
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2009
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2010

Q4 Q1 Q2 Q3
2011
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30 Although not unrelated, it is not only about the size of these institutions.
31 The mean out- and indegree is by definition the same for each point in time. By design, important structural 

information is hidden.
32 The minimum for both, at each point in time, is 0. Not necessarily by definition, but also not unexpected, given 

the number and size of banks in our sample.
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Chart 2

Source: OeNB calculations.

Note: The results are based on a sample of 749 Austrian banks from end-2008 to end-2011 (with the exception of Q2 2010 for which no data were 
available).
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crease from end-2008 to end-2011. 
This reveals a reduction in interbank 
connections of our sample, or – put in 
different terms – reduced density of the 
network.

The average betweenness centrality
remains almost completely stable over 
time (see chart 3). This might be asso-
ciated with stable structural properties 
of the Austrian banking systems that 
can be observed independently of the 
network density, which has fluctuated 
between end-2008 and end-2011. How-
ever, looking at the variance of the 
weighted Katz centrality (see chart 4), Katz centrality (see chart 4), Katz centrality
which can be interpreted as a weighted 

network concentration measure (note 
the inverse trend compared to mean   
in- or outdegree), we conclude that the 
network, after having taken a path 
 towards greater diversification, is now 
exhibiting a trend towards greater con-
centration.

4.1.2 Cluster Analysis

As quantified by Boss et al. (2004) the 
Austrian banking system is heavily 
tiered and clustered. The Raiffeisen 
sector comes with a three-tier struc-
ture (with intermediate institutions in 
Austria’s federal states), whereas Spar-
kassen and Volksbanken are organized in 

Average score
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0.002

0.001

0.000

Average Betweenness Centrality

Chart 3

Source: OeNB calculations.

Note: The results are based on a sample of 749 Austrian banks from end-2008 to end-2011 (with the exception of Q2 2010 for which no data were 
available).

Q4
2008

Q1 Q2 Q3
2009

Q4 Q1 Q2 Q3
2010

Q4 Q1 Q2 Q3
2011

Q4

Million

30

25

20

15

10

5

0

Variance of Katz Centrality1

Chart 4

Source: OeNB calculations.
1 The absolute level of the variance is in millions but has no real significance.
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a two-tiered system. Applying Pajek’s33

version of the Louvain algorithm34 we 
identify 13 communities consistent with 
“expected” sectoral boundaries. Charts 
5 and 6 show the evolution of these 13 
clusters from end-2008 to end-2011 
 respectively.35

The clustered loan networks (see 
charts above) confirm what we have 
observed in the previous section. The 
decrease of inter-cluster connectivity 
has contributed substantially to the loss 
in overall density of the network from density of the network from density
1.6% (end-2008) to 1.2% (end-2011), 
after a peak of 2.3% in Q3 2010.36

Putting all observations from sec-
tion 4.1 together, we find that (i) the 
interbank lending network’s density 
decreases over time (particularly since 
Q3 2010), while (ii) the central nodes 
become more important (as measured 
by Katz centrality variance). Moreover, Katz centrality variance). Moreover, Katz centrality
we are able to characterize (iii) a fairly 
stable network structure that reflects 
the historical development of the Aus-
trian banking system.

4.2  Stability: Contagious Defaults in 
Hypothetical Simulations 

Whereas the (theoretical) literature 
about default cascades is even more 
abundant than the literature about finan-
cial systems as networks,37 the pub-
lished empirical evidence is limited. 
Hence we will not contribute to the 
former but try to add some to the  
latter. At the same time, the results of 
the hypothetical default simulations, 
while not the primary objective of our 

33 See http://vlado.fmf.uni-lj.si/pub/networks/pajek for details.
34 See Blondel et al. (2008). The algorithm optimizes modularity for a given resolution parameter, which is 

associated with a high proportion of links within a cluster – more than can be expected randomly.
35 We are interested in “useful separation” rather than in discovering some ” rather than in discovering some ” “true” community structure.” community structure.”
36 See also chart 1 (degree), as density is a linear transformation of the average degree.
37 Before Eisenberg and Noe (2001) came Rochet and Tirole (1996), who focused on central bank policy options in 

a model of interbank lending, and Allen and Gale (2000), who studied how the banking system responds to 
contagion when banks are connected under different network structures.

Clustered Loan Network as at End-2008

Chart 5

Source: OeNB calculations.

Note: Darker lines indicate a higher loan volume; the black bubble within the yellow cluster represents a very 
large in-cluster loan.

Clustered Loan Network as at End-2011

Chart 6

Source: OeNB calculations.

Note: Darker lines indicate a higher loan volume; the black bubble within the yellow cluster represents a very 
large in-cluster loan.



Contagiousness and Vulnerability in the Austrian Interbank Market

72  FINANCIAL STABILITY REPORT 24 – DECEMBER 2012

paper, are covered in the following sec-
tion. We want to characterize some of 
the major observations related to conta-
giousness as well as vulnerability in our 
sample as those are important for the 
estimation of our panel models.

4.2.1 Default Indicators

As described in the methodology sec-
tion (see 3.2) we explicitly target con-
tagious defaults, i.e. those that are not 
caused by a fundamental weakness of a 
bank but those that follow the failure of 
another bank in the banking system. 

We simulate the default cascades of 
banks no longer honoring their com-
mitments on the interbank market fol-
lowing Elsinger et al. (2006) and dis-
tinguish between contagiousness (the 
number of other banks that a bank 
brings down by contagion) and vulnera-
bility (the number of banks by which a 
bank is brought down).

To describe their basic properties, 
we stick closely to the observations we 
made regarding the degree (see the 
 beginning of subsection 4.1.1). On the 
one hand, the default indicators mirror 
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Chart 7

Source: OeNB calculations.

Note: The results are based on a sample of 749 Austrian banks from end-2008 to end-2011 (with the exception of Q2 2010 for which no data were 
available).
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Source: OeNB calculations.

Note: The results are based on a sample of 749 Austrian banks from end-2008 to end-2011 (with the exception of Q2 2010 for which no data were 
available).
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the degree insofar as a few important/
central nodes overshadow the many 
smaller banks. This is particularly true 
for contagiousness (see chart 7), where 
even the third quartile remains zero 
throughout the observation period. 
This pattern is less pronounced for vul-
nerability (see chart 8), which makes nerability (see chart 8), which makes nerability
perfect sense insofar as by definition a 
bank with many creditors will not be as 
dependent on any single one of them, 
leading to a “natural boundary.”

At the same time, a look at the 
 development over time reveals that 
both default indicators increase from 
end-2008 to end-2011. This finding is 
particularly important, as it reveals an 
increase in contagiousness despite a 
 reduction in the density of the Austrian density of the Austrian density
interbank lending network. Defaults, 
to a certain degree, appear to have far 
more in common with the focal points 
of the network.

Given this observation, are central 
nodes central nodes? That is to say, is 
there a link between frequent defaulters 
irrespective of whether we look at the 
ones that cause high contagiousness or 
the ones affected by high vulnerability.
Looking at the data we can see that 
while no bank’s default is caused by 
more than 20 different institutions, 
some banks’ fundamental default causes 
significant damage to the entire banking 
system. We note that despite the super-
ficial similarity in the development of 
defaults and weights, there is no such 
similarity in depth. This observation 
will become important for our panel 
model in section 4.3, as it indicates that 
entirely different models are necessary 
to explain one or the other. 

4.2.2 Default Networks

In analogy to section 4.1, where we 
 interpret the interbank lending market 
as a network, we can do the same for 
the output of our hypothetical default 

simulations. Same as for the interbank 
liability matrix L, the default matrix 
D carries zeros in the diagonal, is of 
 dimension n×n, binary and not sym-
metric.

At end-2011 we compute an average 
degree of 3.2 and a density of 0.21%, density of 0.21%, density
while at end-2008 the corresponding 
network yielded 2.2 and 0.15% respec-
tively. This is simply a restatement of 
the “increasing number of defaults” 
 observation made above. In network 
terms one could say that the develop-
ment is showing an inverse path com-
pared to the loans-based network, 
 resulting in a denser, more contagion-
prone environment. However, with 
loan network density peaking in Q3 density peaking in Q3 density
2010 when default network density was 
“only” at 0.19%, it appears that this 
trend has more to do with the more 
pronounced tiered structure than with 
mere overall density.density.density

4.3 Can Structure Explain Stability?

Having discussed the properties of our 
left-hand side variables, the next step is 
to find the properties of the banks/

Contagiousness Network as at End-2011

Chart 9

Source: OeNB calculations.

Note: The results are based on the sample of 749 unconsolidated Austrian banks at end-2011 and end-2008, 
respectively. The node size represents the number of banks that the bank causes to default by 
contagion. The positions of the banks are the same as in charts 7 and 8.
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banking system that can explain them. 
We first estimate a model for contagi-
ousness, see section 4.3.1, then vulnera-
bility, see section 4.3.2. As right-hand 
side variables we test for any combina-
tion of bank-specific indicators (from 
the OeNB’s supervisory reporting sys-
tem) and numerous network indicators 
that are calculated on (i) the network as 
a whole, (ii) a subnetwork or cluster, 
and (iii) the node level based on banks’ 
interbank lending relationships.38 We 
will only present one model for each 
default indicator. However, we will dis-
cuss how we arrived at those models, 
always keeping economic intuition as 
well as explanatory power firmly in 
sight.

4.3.1 Explaining Contagiousness

Understanding the determinants of con-
tagiousness is one of the most challenging tagiousness is one of the most challenging tagiousness
questions in modeling an interbank 

 network. A systemically important bank 
could be defined as a bank that ad-
versely affects a number of other banks 
in case it runs into trouble itself. In our 
regression we explained the impaired 
share of total banking assets since the 
mere number of caused defaults would 
obscure the actual cost (of a hypotheti-
cal bail-out) given the vast difference in 
size across our banks. 

As a starting point, given the itera-
tive nature of default dynamics, self-
referential indicators appear as some-
what stronger candidates. Eigenvector 
centrality appears to be an obvious centrality appears to be an obvious centrality
 candidate and even yields acceptable 
 regression statistics, but misses the point 
of the Austrian (tiered) loan network, 
since it is driven by cyclic areas in 
 networks, and does not address the 
hub-and-spoke structure we observe 
as well.39

Betweenness centrality and Betweenness centrality and Betweenness centrality closeness 
centrality have shortcomings as they are centrality have shortcomings as they are centrality
based on shortest paths, which carry no 
obvious interpretation in loan networks 
and indeed show little explanatory 
power for contagiousness. Our preferred 
network indicator is thus a modified 
version of Katz centrality. It takes into 
account that nodes without incoming 
links have no power to cause contagion 
(their centrality must be zero); banks centrality must be zero); banks centrality
with only incoming links have the 
power to cause contagion (their centra-
lity must not be zero); the neighbors’ lity must not be zero); the neighbors’ lity
neighbors matter as well as the loan 
sizes.

From the centrality layout chart (see centrality layout chart (see centrality
chart 11), which shows banks with 
higher Katz centrality closer to the cen-Katz centrality closer to the cen-Katz centrality
ter, we can see that all banks with a 
high degree of contagiousness (illus-

Contagiousness Network as at End-2008

Chart 10

Source: OeNB calculations.

Note: The results are based on the sample of 749 unconsolidated Austrian banks at end-2011 and end-2008, 
respectively. The node size represents the number of banks that the bank causes to default by 
contagion. The positions of the banks are the same as in charts 7 and 8.

38 The latter were described in detail in section 3.1 and their respective realizations for the Austrian interbank 
lending network from end-2008 to end-2011 discussed in section 4.1.

39 For a detailed discussion of Eigenvector centrality and related measures see Newman (2010), Bonacich and Lloyentrality and related measures see Newman (2010), Bonacich and Lloyentrality and related measures see Newman (2010), Bonacich and Llo d 
(2001) and the forthcoming, extended version of this paper.
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trated by darker color and larger area) 
are far away from the outskirts of the 
circle. On the other hand we find no 
small, light nodes near the center. So, 
banks which are granted many and/or 
large loans carry higher Katz centrality
and tend to cause the most damage 
when defaulting.

In addition, we have tested for idio-
syncratic characteristics of nodes by 
adding various asset- and capital-based 
indicators from the OeNB’s supervi-
sory reporting data. To our surprise, 
neither were those indicators adding to 
the explanatory power of our model, 
nor were they statistically significant.40

This yields a simple model with Katz 
centrality as the only explanatory vari-centrality as the only explanatory vari-centrality
able as our preferred model (see 
table 1), thereby demonstrating that 
network  indicators do indeed add in-
formation to explain contagiousness 
unavailable in standard supervisory 
 reporting data.

4.3.2 Explaining Vulnerability
Our second dependent variable, vulne-
rability, measures the vulnerability of a 
bank with respect to fundamental de-
faults at other banks. Thus, we explain 
how many times out of 748 simulations 
where one bank defaults at a time, the 
given (749th) bank defaults through 
contagion. To control for the difference 
between fundamentalbetween fundamentalbetween  and fundamental and fundamental induced defaults
we add a leverage ratio (capitalbyassets) to 
the panel model.41 However, it is not 
significant at the 10% level (see table 2). 
Again, the network properties seem to 
be more important in terms of explana-
tory power for vulnerability than tradi-
tional measures of risk-bearing capacity. 

Since we hypothesize that vulnerabi-
lity should be more dependent on net-lity should be more dependent on net-lity
work properties we select outputdegree 
k-core (outputdegreekcore), cluster-density 
(clusterdensity), the number of banks in clus-
ter (numbanksclu) and the clustering coeffi-
cient (clusteringcoeff~sone) in our model. 

In more detail, the rationale behind 
the selection is the following: The 
higher the order of outputdegree k-core 
of a bank, the more likely are alterna-

(Katz) Centrality Layout

Chart 11

Source: OeNB calculations.

Note: Larger and darker circles represent higher contagion effects; the 
closer to the center the higher the Katz centrality.

40 Again, we refer to the forthcoming extended version of the paper for a detailed discussion.
41 The capital-to-assets ratio is based on the OeNB’s supervisory reporting and defined as capital over assets.

Table 1

Panel Data Regression Statistics: Contagiousness

Fixed effects (within) regression

b se t p

WeightedKatz 1.63e-06  5.18e-07 3.15 0.002
_cons .0010053  .0002355 4.27 0.000

sigma_u .00833046
sigma_e .00350343
rho .84971309 (fraction of variance due to u_i)

r2 within 0.296
r2 between 0.712
r2 overall 0.662
N-observations 8976
N-groups 749

Source: OeNB calculations.
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tive sources of funding and the less 
 pronounced is the effect of a core 
 member’s default. This variable has by 
far the most predictive power even 
though no weighting was performed (i.e. 
cores are independent of loan sizes).

The coefficient of cluster density is cluster density is cluster density
also negative, which means that a higher 
degree of connectedness within one of 
the 13 previously identified clusters 
 reduces vulnerability. Again, the bigger 
the number of banks in a cluster the 
lower their vulnerability since the port-vulnerability since the port-vulnerability
folio diversification effect of interbank 
connections within a cluster reduces 
the likelihood of being contagiously 
 affected by another bank. 

Finally, the clustering coefficient mea-
sures the connectedness of one node’s
neighbors. As the clustering coefficient is 
on average one quarter of the average 
cluster density the clustering coefficient is 
an economically more important indi-
cator for vulnerability.

The large number of variables (in 
comparison to the contagiousness model) 
can be attributed to the fact that our 
 research suggests an even greater 

 importance of the immediate vicinity 
of a node in explaining its vulnerability. 
Only the introduction of cluster vari-
ables yielded any statistically significant 
models with regard to explanatory 
power. This constitutes the most im-
portant finding of our paper, and adds 
value in particular with regard to 
Schmitz and Puhr (2009), where the 
authors faced similar difficulties account-
ing for vulnerability (albeit in the pay-vulnerability (albeit in the pay-vulnerability
ment system world).

5 Conclusion

By applying standard network tech-
niques to our dataset of interbank lend-
ing relationships for the Austrian inter-
bank market from end-2008 to end-
2011, we were able to find ties between 
a bank’s position in the lending net-
work and its performance in hypotheti-
cal default simulations (conducted as 
part of OeNB’s quarterly systemic risk 
assessment). To quantify these ties we 
used a panel model approach to link 
the defaults (dependent variables) to 
network and/or balance sheet indica-
tors (independent variables).

With regard to a bank’s contagious-
ness (measured in terms of the assets of 
any other banks that it would drag 
down if it were to default), the iterative 
nature of Katz centrality allows for a Katz centrality allows for a Katz centrality
very good prediction of default cascades 
and also makes it possible to assess 
 potential recapitalization requirements 
for the banking system, thus providing 
an alternative measure of systemic 
 importance. The model does not take 
into account the distribution of a bank’s 
neighbors’ risk-bearing capacity or the 
proportion of loans to the bank’s capi-
tal. These points together with further 
work to calibrate Katz centrality42Katz centrality42Katz centrality  pro-
vide possible paths for further develop-
ment of the model. 

42 In particular the search for an optimal attenuation factor α.

Table 2

Panel Regression Statistics: Vulnerability

Fixed effects (within) regression

b se t p

outdegreekcore  –0.018*** 0.002  –8.113 0.000
clusterdensity  –0.294* 0.132  –2.229 0.026
capitalbyassets  –0.396 0.281  –1.410 0.159
numbanksclu  –0.001*** 0.000  –4.265 0.000
clusteringcoeff~sone  –4.736*** 0.937  –5.054 0.000
_cons  –0.825*** 0.037 22.122 0.000

r2 within 0.114
r2 between 0.411
r2 overall 0.306
N-observations 8976
N-groups 749

Source: OeNB calculations.

Note:* p<0.05; ** p<0.01; *** p<0.001.
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For an assessment of the vulnerability
of a bank (measured in terms of the 
number of defaulted banks that would 
cause a given bank to go down by con-
tagion), we are able to show that adding 
more information about the structure 
of the banking system43 by introducing 
cluster-network indicators improves 
the estimation of our panel model sig-
nificantly. A possible route for refine-
ment would be the introduction of a 
different configuration, possibly adding 
weights to account for loan size, of the 
clustering algorithm as well as looking 
at introducing a ratio for individual 
loans to capital. This should enable us 
to improve our measure of a given 
bank’s vulnerability in terms of prone-vulnerability in terms of prone-vulnerability
ness to default by contagion. 

Nevertheless, already at this stage 
we believe that our models provide a 
complementary look at a bank’s risk 
profile for (macroprudential) supervi-
sory purposes. Although we used a 
 dataset constrained to unconsolidated 
banks from a single country, we are 
 optimistic that our findings could be 
verified for other banking systems.44

Finally, further refining our research 
(e.g. through a specific analysis of con-
tagion channels), we can envisage recom-
mendations for policymakers based on 
our work with regard to an adequate 
policy mix/communication strategy to 
possibly mitigate the risks associated 
with second-round effects, contagion 
risk and default cascades in the inter-
bank market. 

43 The “ known structure” in case of the Austrian banking system is its historically established banking sectors and ” in case of the Austrian banking system is its historically established banking sectors and ”
their tiered structure.

44 In particular it would be interesting to examine how the significance of network indicators is different in different 
banking networks and different capital level environments.
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