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Klaus Rheinberger Martin Summer

Abstract

We give a precise operational definition to three requirements the Basel
Committee on Banking Supervision specifies for stress tests: Plausibility
and severity of stress scenarios as well as suggestiveness of risk reducing
actions. The basic idea of our approach is to define a suitable region of
plausibility in terms of the risk factor distribution and search systemat-
ically for the worst portfolio loss over this region. One key innovation
compared to the existing literature is the solution of two open problems.
We suggest a measure of plausibility that is not prone to the problem of
dimensional dependence of maximum loss and we derive a way to consis-
tently deal with situations where some but not all risk factors are stressed.
Among the various approaches used for partial scenarios, plausibility is
maximised by setting the non stressed risk factors to their conditional
expected value given the value of the stressed risk factors.

Keywords: Stress testing, maximum loss, risk management, banking regula-
tion.
JEL-Classification Numbers: G28, G32, G20, C15.
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1 Introduction

The current regulatory framework of the Basel Committee on Banking Supervi-
sion [2005] requires banks to perform stress tests which meet three requirements:
plausibility of stress scenarios, severity of stress scenarios and suggestiveness of
risk reducing action.1 How do we find stress scenarios which are the same time
plausible, severe, and suggestive for the design of risk reducing action? Our
paper gives a systematic answer to this question. We suggest a method that
can be implemented for a wide class of stress testing problems usually encoun-
tered in practice. We illustrate the method and the issues in the context of an
example: stress tests for a portfolio of adjustable rate loans in home and foreign
currency.

The quality of a stress test crucially depends on the definition of stress sce-
narios. Defining stress scenarios is a thought experiment. It is a counterfactual
exercise where a risk manager tries to imagine what adverse or even catastrophic
events might strike his portfolio. Such a thought experiment is prone to two
major pitfalls: consideration of implausible scenarios and neglection of plausible
scenarios. Thinking about scenarios requires to imagine situations that have not
yet occurred but might occur in the future. Bias towards historical experience
can lead to the risk of ignoring plausible but harmful scenarios which did not yet
happen in history. This creates a dangerous blind spot. If the imagination of
a stress tester puts excessive weight on very unplausible scenarios management
faces an embarrassing decision: should one react to alarming results of highly
implausible stress scenarios? Our method allows a precise trade off between
plausibility and severity. In this way we can ensure that in a model of portfolio
risk, no harmful but plausible scenarios are missed. Furthermore, our stress test
method suggests ways to reduce risk if desired.

We analyse the problem of finding extreme but plausible scenarios in a classi-
cal quantitative risk management framework, assuming some statistical model.
A portfolio of financial instruments, say a portfolio of loans, is given. The value
of each loan at some given horizon in the future is described by the realization
of certain risk factors. In the case of a loan portfolio, for example, these risk
factors will comprise the macroeconomic environment (because of its impact
on the payment ability and thus on the solvency of borrowers), market factors
like interest rates (or exchange rates in the case of foreign currency loans) but
also idiosyncratic factors that influence a borrower’s solvency. The uncertainty
about the realization of risk factors is described by a risk factor distribution
that is estimated from historical data. Plausibility is captured by specifying
how far we go into the tails of the distribution in our search for stress scenarios.
The severity of scenarios is maximized by systematically searching for the worst
case, the maximum portfolio loss, in a risk factor region of given plausibility.

This general idea of looking at extreme scenarios has been formulated in the
literature before. In the context of credit risk stress testing, it is informally dis-
cussed by Čihák [2004, 2007]). For market risk stress tests, the idea is discussed

1The respective references in Basel Committee on Banking Supervision [2005] are: “Quan-
titative criteria should identify plausible stress scenarios to which banks could be exposed.”
(par. 718 (LXXIX)),“ (...) a bank should also develop its own stress tests which it identi-
fies as most adverse based on the characteristics of its portfolio” (par. 718 (LXXXIII)) and
“Qualitative criteria should emphasize that two major goals of stress testing are to evaluate
the capacity of the bank’s capital to absorb potential large losses and to identify steps the
bank can take to reduce its risk and conserve capital.” (par. 718(LXXIX))
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more formally in Studer [1999, 1997] and in Breuer and Krenn [1999]. This lit-
erature leaves however two open issues that seem technical at first sight but are
of great practical relevance: The problem of partial scenarios and the problem
of dimensional dependence of maximum loss. In another respect this paper is
novel. It performs stress tests integrating market and credit risk, instead of just
one of the two. It will turn out that the interaction effects are considerable.

The partial scenario problem comes from the situation that a portfolio may
depend on many risk factors but the modellers are interested in stressing not
all but only a few factors at a time. For example in a loan portfolio we are
often interested in stress scenarios for particular variables: A certain move in
the exchange rate, or a particular drop in GDP. How do we deal with the other
risk factors consistently? Do we leave them at their last observed value, at some
average value, should we condition on the stressed macro factor and if so how?
We show that the way to deal with the partial scenario problem that maximizes
plausibility is to set the non stressed systematic risk factors to their conditional
expectation for the given value of the stressed factors. We show furthermore
that this has the same plausibility than the computationally more intensive full
loss simulation from the conditional stress distribution as in Bonti et al. [2005].

If we look for maximum loss in a risk factor region of given plausibility we
want the maximum loss to be independent from the inclusion of irrelevant risk
factors or risk factors that are highly correlated with factors already included in
the analysis. The plausibility measures that were used in the previous literature
(see Studer [1999, 1997]) suggested to define plausibility regions as regions with
a given probability mass. This definition of plausibility has an undesirable
property, known as the problem of dimensional dependence of maximum loss.
The reason is that the probability mass of an n-dimensional ellipsoid of given
radius depends on the number of dimensions, in the same way as the volume
of an n-sphere depends on the nunber of dimensions. In a higher dimensional
space the radius needs to be larger in order for the ellipsoid to contain the
same probability mass. If one defined plausibility of a scenario in terms of the
probability mass of the ellipsoid of smaller moves, then maximum loss would
depend on the number of risk factors. This number is to some degree arbitrary
because models which include or exclude risk factors which are completely or
almost irrelevant to the portfolio value lead to the same profit loss distribution
and cannot or only hardly be distinguished empirically. In a higher dimensional
represenation the ellipsoid will have a larger radius. It therefore allows for larger
risk factor moves and thus for more harmful stress scenarios with higher loss.

To get an intuitive understanding of the problem consider an example from
Breuer [2008]. We have a bond portfolio with risk factors consisting of two yield
curves in 10 foreign currencies. One risk manager chooses to model the yield
curve with seven maturity buckets and another risk manager uses 15 buckets.
In this case the first risk manager uses 150 risk factors in his analysis and the
second manager uses 310. As plausibility region both of them choose an ellipsoid
of mass 95%. Breuer [2008] shows that the second risk manager will calculate
a maximum loss that is 1.4 times higher than the maximum loss calculated by
first risk manager. This is problematic because both of them look at the same
portfolio and use the same plausibility level. Our measure of plausibility does
not have this problem.

The paper is organized as follows: In Section 2 we define a quantitative
measure of plausibility and explain why it is not subject to the dimensional de-
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pendence problem. We discuss how to deal with the problem of partial scenarios
and explain the technique of worst case analysis. We also discuss how measures
for risk reducing actions can be deduced from the stress test. In Section 3
we analyse an example of a portfolio of foreign currency loans that illustrates
the practical applicability as well as the potential improvement compared to a
standard stress testing procedure. The final section (4) concludes.

2 Finding scenarios that are plausible, severe,
and suggestive of counter-action

We consider the problem of stress testing a loan portfolio. The value of each
position in the portfolio depends on n systematic risk factors r = (r1, . . . , rn)
and on m idiosyncratic risk factors ε1, . . . , εm. Typically, the systematic risk
factors are market and/or macroeconomic risk factors, and the idiosyncratic
risk factors refer to the individual counterparties. The number of idiosyncratic
risk factors is much larger than the systematic risk factors. In our approach
we have to restrict the distribution of the systematic risk factors r to a class
called the elliptical distributions. For the definition and some basic facts about
elliptical distributions we refer to the standard work of Fang et al. [1987]. For
our purpose it is enough to note that the standard distributions used in classical
risk management problems are in fact from this class. We denote the covariance
matrix and expectations of the distribution of r by Cov and µ. The distribution
of the idiosyncratic risk factors may be arbitrary as long as the expectation of
the portfolio value function, conditional on some or all systematic risk factors,
exists.

2.1 Plausible scenarios

In a stress test of a loan portfolio we imagine extreme realizations of one or
more of the systematic risk factors. How would we quantify the plausibility of
this thought experiment?

An intuitive approach could be to compare the extreme realisation of a risk
factor to its average. Intuitively the further we are away from this average value,
the less plausible the stress scenario becomes. The distance should be measured
in standard deviations. For multi-variate moves the plausibility should depend
additionally on the correlations. A multi-variate move which is in agreement
with the correlations is more plausible than a move against the correlations.

A statistical concept that formalises these ideas is the so called Mahalanobis
distance given by

Maha(r) :=
√

(r − µ)T · Cov−1 · (r − µ),

The Mahalanobis distance is simply the distance of the test point from the center
of mass divided by the width of the ellipsoid in the direction of the test point.
Intuitively, Maha(r) can be interpreted as the number of standard deviations
of the multivariate move from µ to r. Maha takes into account the correlation
structure and the standard deviations of the risk factors.

Although Maha is an intuitive measure of plausibility, it has two drawbacks.
First, it reflects only the first two moments of the risk factor distribution because
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it only depends on µ and Cov. For risk factor distribution agreeing on the first
two moments but not on the higher moments, a given move will have the same
Maha although that move might be more plausible for the distribution with
fatter tails. Second, Maha depends on the choice of coordinates Breuer [2008].
There are transformations mapping the normal into the normal distribution, but
not mapping the ellipsoid into the ellipsoid. Coordinate dependence confronts
us with the dilemma of choosing one of two undesirable alternatives. Either we
single out one specific coordinate system and take as admissibility domain in
other coordinate systems the transform of the ellipsoid, even if the transform is
not an ellipsoid. But it is unnatural to take a non-elliptical admissibilty domain
in transformed coordinates, in which risk factors are distributed normally. Al-
ternatively we can take as admissibility domain in the transformed coordinates
the ellipsoids. But this will result in a different worst case scenario and in a
different MaxLoss value than in the original coordinates. Both drawbacks can
be avoided with a more general notion of plausibility, which uses generalised
scenarios.2

In contrast to the previous literature we define plausibility directly in terms
of Maha(r): A high value of Maha implies a low plausibility of the scenario r.
Earlier work defined plausibility in terms of the probability mass of the ellipsoid
of all scenarios of equal or lower Maha, see Studer [1999, 1997] or Breuer and
Krenn [1999]. That approach creates the problem of dimensional dependence
of maximum loss. In our approach this problem does not occur because we
specifiy the size of the ellipsoid in terms of its Maha-radius, not it terms of its
probability mass. Breuer [2008] proves that this notion of plausibility overcomes
the problem of dimensional dependence of maximum loss.

2.2 Partial scenarios

Typically portfolios are modelled with hundreds or thousands of risk factors.
Stress scenarios involving the full plethora of risk factors are hardly tractable
numerically and overwhelmingly complex to interpret. Therefore practioners use
only scenarios with a handful of risk factors. These we call partial scenarios,
because not all risk factors of the model are stressed. How should the other risk
factors be treated?

Kupiec [1998] discussed four different ways to deal with the risk factors not
fixed by some partial scenario:

(A) The other systematic risk factors remain at their last observed value.

(B) The other macro risk factors take their unconditional expectation value.

(C) The other systematic risk factors take their conditional expected value
given the values of the fixed risk factors. Denote by rC the resulting
vector of values of the systematic risk factors.

2Generalised scenarios are probability distributions rather than points of the sample space.
The plausibility of a generalised scenario can be measured by the relative entropy of this
distribution with respect to the prior distribution of r. This concept of plausibility does not
depend on the choice of coordinates, and it does not only reflect the first two moments of the
risk factor distribution. Additionally, it can be applied to correlation stress scenarios. The
more general notion of plausibility reduces to Maha in the special case of normal distributions
with fixed covariance matrix. The relative entropy of the generalised scenario, which is a
normal with the same covariance matrix as the prior risk factor distribution, is the Maha
between the means of the generalised scenario and of the prior.
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(D) The other systematic factors are not fixed but distributed according to the
conditional distribution given the values of the fixed risk factors. Denote
by rD the vector of values of the fixed systematic risk factors.

Our first result suggests a choice between these alternatives based on our
concept of plausibility. The result says that the specification of partial scenarios
as in method (C) or (D) both maximize plausibility. In the literature on stress
testing of loan portfolios Bonti et al. [2005] have suggested to use method (D).
This is indeed an approach that maximizes plausibility. From our result we learn
that we can achieve an equivalent plausibility by using the computationally more
efficient approach (C).

We state this result more formally in the following

Proposition 1. Assume the distribution of systematic risk factors is elliptical
with density strictly decreasing as a function of Maha. Then:

1. Maha(rC) = Maha(rD).

2. This is the maximal plausibility which can be achieved among all macro
scenarios which agree on the fixed risk factors.

A proof is in the appendix. This proposition is of high practical relevance.
It is the basis of partial scenario analysis. It implies that two choices of macro
stress distributions are preferable, namely (C) or (D). Assigning to the non-
fixed risk factors other values than the conditional expected values given the
fixed risk factors leads to less plausible macro stress scenarios.

2.3 Severe Scenarios

An important disadvantage of stress testing with hand-picked scenarios is the
danger to ignore harmful but plausible scenarios. This may create an illusion
of safety. A way to overcome this disadvantage is to search systematically for
those macro scenarios in some plausible admissibility domain which are most
harmful to the portfolio. By searching systematically over admissible domains
of plausible macro scenarios one can be sure not to ignore any harmful but
plausible scenarios. This is our approach to construct a stress test: find the
relevant scenarios which are most harmful yet above some minimal plausibility
threshold. This problem can be formulated as an optimization problem which
can be solved numerically by using an algorithm of Pistovčák and Breuer [2004].

The admissibility domain is determined by our concept of plausibility. It
contains all scenarios with Maha(r) below a threshold k:

Ellk := {r : Maha(r) ≤ k} .

Geometrically this domain is an ellipsoid whose shape is determined by the
covariance matrix of the systematic risk factors:

Partial scenarios do not specify a unique portfolio value but just a distribu-
tion, namely the distribution of portfolio values conditional on the values of the
risk factors fixed by the scenario. In order to measure the severity of scenarios
one needs to quantify the severity of the corresponding conditional portfolio
value distribution. In this paper we use the expectation value, although other
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risk measures could be used as well. Thus we call a partial scenario severe if
it has a low conditional expected profit (CEP). To sum up, our stress testing
method amounts to solving the following optimization problem

min
r∈Ellk

CEP(r).

The difference between the lowest CEP in the admissibility domain and the
CEP in the expected scenario is the maximum expected loss in the admissibility
domain. This concept of maximum loss overcomes the problem of dimensional
dependence which we mentioned in the introduction. Maximum expected loss
over the admissibility domain Ellk is not affected by excluding or including
macro risk factors which are irrelevant to the portfolio value (see Breuer [2008]).

What is the advantage of this worst case search over standard stress test-
ing? First, it achieves a controlled trade-off between plausibility and severity of
scenarios. If we want to get more severe scenarios, we choose a higher k and get
less plausible worst case scenarios. If we want to get more plausible scenarios,
we choose a lower k and get less severe worst case scenarios. Second, it over-
comes the historic bias by considering all scenarios which are plausible enough.
In this way we can be sure not to miss scenarios which are plausible but did
not yet happen in history. Thirdly, worst case scenarios reflect portfolio specific
dangers. What is a worst case scenario for one portfolio might be a harmless
scenario to another portfolio. This is not taken into account by standard stress
testing. Portfolio specific dangers suggest possible counter-action to reduce risk
if desired.

2.4 Scenarios Suggesting Risk Reducing Action

Risk reducing action is suggested by identifying the key risk factors which con-
tribute most to the expected loss in the worst case scenario. We define key
risk factors as the risk factors with the highest Maximum Loss Constribution
(MLC). The loss contribution (LC) of risk factor i to the loss in some scenario
r is

LC(i, r) :=
CEP (µ)− CEP (µ1, . . . , µi−1, ri, µi+1, . . . µn)

CEP (µ)− CEP (r)
, (1)

if CEP (r) 6= CEP (µ). LC(i, r) is the loss if risk factor i takes the value it
has in scenario r, and the other risk factors take their expected values µ, as a
percentage of the loss in scenario r. In particular, one can consider the worst
case scenario, r = rWC . In this case the loss contribution of some risk factor i
can be called the Maximum Loss Contribution:

MLC(i) := LC(i, rWC). (2)

MLC(i) is the loss if risk factor i takes its worst case value and the other risk
factors take their expected values, as a percentage of MaxLoss.

The Maximum Loss Contributions of the macro risk factors in general do
not add up to 100%. Sometimes the sum is larger, sometimes it is smaller. If
this sum is equal to one, the loss in the scenario is exactly equal to the sum of
losses from individual risk factor moves. This happens if and only if the risk
factors do not interact:
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Proposition 2. Assume CEP as a function of the macro risk factors has con-
tinuous second order derivatives. The loss contributions of the risk factors add
up to 100% for all scenarios r,

n∑
i=1

LC(i, r) = 1

if and only if CEP is of the form

CEP(r1, . . . , rn) =
n∑

i=1

gi(ri). (3)

This is the case if and only if all cross derivatives of CEP

∂2CEP(r)
∂ri∂rj

= 0

vanish identically for i 6= j.

This characterization has a substantial practical relevance. The sum of loss
contributions measures the amount and direction of risk factor interaction. If
the sum is larger than one the interaction between risk factors is benign. The
total loss in the scenario is smaller than the sum of losses from individual risk
factor moves.

Most dangerous are situations of negative interaction between risk factors.
If the sum of single risk factor MLCs is smaller than one the total loss in the
scenario is larger than the sum of losses from individual risk factor moves. The
harm of the scenario cannot be fully explained by individual risk factor moves.
The simultaneous move of some risk factors causes harm on top of the single
risk factor moves. In this case it will be necessary to consider Maximum Loss
Contributions not of single risk factor moves but of pairs or of larger groups of
risk factors. One can Proposition 2 to groups of risk factors.

Consider some partitioning of the risk factor indices {1, 2, . . . , n} into groups
I1, . . . , Is. Each risk factor will be in exactly one group. The loss contribution
of a group I in scenario r can be defined as

LC(I, r) :=
CEP (a1, . . . an)− CEP (µ)

CEP (r)− CEP (µ)
, (4)

where ai := ri if i ∈ I and ai := µi if i /∈ I. The definition assumes CEP (r) 6=
CEP (µ).

Proposition 3. Assume CEP as a function of the macro risk factors has con-
tinuous second order derivatives. The loss contributions of the risk factor groups
add up to 100% for all scenarios r,

s∑
k=1

LC(Ik, r) = 1

if and only if CEP is of the form

CEP (r1, . . . , rn) =
s∑

k=1

gk(rIk
),
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where rIk
denotes the vector containing only the components ri for i ∈ Ik.

This is the case if and only if all cross derivatives of CEP between variables in
different groups vanish identically,

∂2CEP (r)
∂ri∂rj

= 0

for each i ∈ Ik and each j ∈ Il with k 6= l.

This proposition reveals a weakness in current regulatory thinking. Cur-
rent regulation analyses portfolio risk along the categories of market and credit
risk. Market risk arises from price changes of shares, currencies, interest rates,
or commodities. Credit risk describes the harm caused by counterparties not
meeting their payment obligations. This is captured in risk factors like PDs,
LGDs, default correlations, or other risk factors from which these quantities can
be derived. Current regulation determines total risk capital as sum of market
and credit risk capital (plus provisions for other risk types). Often it has been
argued that total risk capital could be smaller than the sum of market and credit
risk because of ‘diversification effects’. But this is only justified if the portfolio is
separable into one subportfolio just exposed to market risk factors , and another
subportfolio just exposed to credit risk factors. Estimates of capital discounts
applicable in such situations were made by Rosenberg and Schuermann [2006].
Proposition 3 (for the case of two risk factor groups) implies that a separate cal-
culation of market and credit risk may in fact underestimate the true portfolio
risk because it ignores the risks stemming from simultaneous moves in market
and credit risk factors. For a detailed discussion of this problem see Breuer
et al. [2009].

Key risk factors are essential for the design of possible risk reducing action.
One strategy could be to buy hedges which pay off exactly when the key risk
factors take their worst case value. Another, more comprehensive but also more
expensive strategy is to buy hedges which neutralize the harm done not just by
the worst case moves of the key risk factors but by all moves of the key risk
factors. For the example of the foreign currency loan portfolios discussed in the
next section, this strategy is demonstrated in Breuer et al. [2008].

3 Application: Stress testing a portfolio of for-
eign currency loans

We now illustrate the concepts and their quantitative significance in an example:
a stress test for a portfolio of adjustable rate loans in home or foreign currency
(CHF) to 100 borrowers in the rating class B+, corresponding to a default
probability of pi = 2%, or in rating class BBB+, corresponding to a default
probability of pi = 0.1%. At time 0, in order to receive the home currency
amount l =e 10 000 the customer of a foreign currency loan takes a loan of le(0)
units in a foreign currency, where e(0) is the home currency value of the foreign
currency at time 0. The bank borrows le(0) units of the foreign currency on
the interbank market. The loan period is one year. During the year the interest
rate is fixed every quarter, leading to an average annual interest rate rh resp.
rf , which is not known in advance. At time 1, which we take to be one year,
all the loans expire and the bank repays the foreign currency at the interbank
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market, and it receives from the customer a home currency amount which is
exchanged at the rate e(1) to the foreign currency amount covering repayment
of the principal plus interest rolled over from four quarters, plus a spread sh

resp. sf . So the borrower’s payment obligation to the bank at time 1 in home
currency is

of = l (1 + rf )E + sf l E (5)
oh = l (1 + rh) + sh l (6)

for the foreign and home currency loan, where E := e(0)/e(1). The first term
on the right hand side is the part of the payment which the bank uses to repay
its own loan on the interbank market. The second term is profits remaining
with the bank. For all loans in the portfolio we assume they expire at time
1. The model can be extended to a multi period setting allowing for loans not
maturing at the same time and requiring payments at intermediate times.

In order to evaluate idiosyncratic and systematic risk of a portfolio of such
loans we use a one-period structural model specifying default frequencies and
losses given default endogenously. For details of the model we refer to Breuer
et al. [2008]. The basic structure of the model is given by the payment obli-
gation distribution derived from the payment obligation function (5) and a log
normal payment ability distribution, which involves log normally distributed id-
iosyncratic changes and an additional dependence of the mean one future GDP
changes. (Pesaran et al. [2005a] use a model of this type for the returns of firm
value.) Each customer defaults in case their payment ability at the expiry of the
loan is smaller than their payment obligation. In case of default the borrower
pays what he is able to pay. The difference to the payment obligation first is
lost profit and then loss for the bank.

The spread sh resp. sf and the variance of the idiosyncratic payment ability
changes are determined jointly in a calibration procedure. The first calibration
condition ensures that the model default probability coincides with the default
probability determined in some external rating procedure. The second calibra-
tion condition ensures that expected profit from each loan reaches some target
level of e 160, which amounts to a return of 20% on a regulatory capital of
8%. Both calibration conditions depend on the spread s and the variance of the
idiosyncratic payment ability changes.

The systematic risk factors entering the portfolio valuation are GDP, the
home interest rate rh and the foreign interest rate rf , and the exchange rate
change E. The probability law driving these risk factors is modelled by a time
series model that takes account of economic interaction between countries and
regions. Estimating the parameters of this model we can simulate scenarios for
the systematic risk factors. For details of this model, known in the literature
as GVAR model see Pesaran et al. [2001], Pesaran et al. [2005b], Garrett et al.
[2006], and Dees et al. [2007].

The profit distribution was calculated in a Monte Carlo simulation by gen-
erating 100 000 scenario paths of four steps each. The resulting distribution of
risk factors after the last quarter, which is not normal, was used to estimate
the covariance matrix of 1yr macro risk factor changes. In each macro scenario
defaults of the customers were determined by 100 draws from the idiosyncratic
changes in the payment ability distribution. From these we evaluated the profit
distribution at the one year time horizon.
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3.1 Hand-picked versus systematic stress tests

Let us compare the severity of the hand-picked scenario “GDP shrinks by 3%”,
which in our model is a 5.42σ event, to the worst case scenario of the same
plausibility. Conditional expected profits for the standard scenario ‘GDP -3%
and other risk factors at their conditional expected value’, and of worst case
scenarios of the same plausibility, are as follows.

scenario Maha CEP

foreign B+

expected 0 16 001
GDP -3% 5.42 15 950
worst case 5.42 -98 101

foreign BBB+

expected 0 15 999
GDP -3% 5.42 15 870
worst case 5.42 -95 591

home B+

expected 0 16 000
GDP -3% 5.42 14 249
worst case 5.42 13 291

home BBB+

expected 0 16 000
GDP -3% 5.42 15 811
worst case 5.42 15 626

We observe that for all portfolios the conditional expected profits are consider-
ably lower in the worst case scenarios than in the hand-picked GDP scenario.
This is evidence of the danger which lies in relying solely on hand-picked sce-
narios. Expected profits in this rather extreme hand-picked GDP scenario are
only slighty lower than unconditional expectations, namely by amounts between
e 129 and e 1 751 on a loan portfolio worth e 1m and giving an unconditional
expected profit of e 16 000. These moderate profit reductions in such an ex-
treme scenario might provide a feeling of safety. But this in an illusion. There
are other scenarios out there which are equally plausible but much more harm-
ful: the worst case scenarios like the ones given in Table 1 for different k. Worst
case losses are particularly bad for the FX loan portfolios. Instead of expected
profits of e 16 000 one faces expected losses of e 98 101 and e 95 591. These
huge losses of roughly 11% of loan value are higher than the total regulatory
capital of 8%.

3.2 Key risk factors and risk reducing actions

What is a worst case scenario for one portfolio might be a harmless scenario
to another portfolio. This is not taken into account by standard stress testing.
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Stress testing is relevant only if the choice of scenario takes into account the
portfolio structure. In a systematic way this is done by worst case search.

Key risk factors are ones with highest maximum loss contributions (MLC).
The worst case scenarios, together with the MLC for each risk factor are given
in Table 1, for different sizes of the admissibility domain. These results identify
which risk factor is key for which portfolio.

For the foreign currency loan portfolio the exchange rate is clearly the key
risk factor. This becomes apparent from Table 1. In the worst case scenario the
FX rate alone contributes between 34.4% and 100% of the losses in the worst
case scenarios. The MLC of the other risk factors are negligible. This indicates
that the FX rate is the key risk factor of the foreign currency loan portfolio.

There is another interesting effect. The dependence of expected profits of
foreign currency loans on the CHF/e rate is not only non-linear, but also
not monotone. For the B+ FX loan portfolio (left plot in Figure 1), focusing
on changes smaller than 2σ it becomes evident that a small increase in the
exchange rate has a positive influence on the portfolio value, but large increases
have a very strong negative influence. Correspondingly, in Table 1, if we restrict
ourselves to small moves (Maha smaller than 2σ) the worst case scenario is in
the direction of increasing exchange rates, but if we allow larger moves the worst
case scenario is in the direction of decreasing exchange rates. This effect also
shows up in the worst macro scenarios of Table 1. The reason for this non-
monotonicity is that a small decrease in the FX rate increases the EUR value of
spread payments received. For larger moves of the FX rate this positive effect is
outweighed by the increases in defaults due to the increased payment obligations
of customers.

The interaction structure of risk factors emerges from the MLC values in
Table 1. The first point to observe is that the MLC of single risk factors do
not sum up to one. (For example, for the BBB+ FX loan portfolio at k = 4
the MLC of single risk factors sum up to 34.4%.) This indicates the presence
of dangerous interaction effects between risk factors. The second point is that
the pair (IR, FX) has high a MLC. (For example, 85.4% in the case above.)
This indicates that interest rate risk considerably enhances exchange rate risk.
This is important for the design of risk reducing action. Hedge positions should
pay off in situations where exchange rates fall and simultaneously interest rates
move up.

The diagnosis that the FX rate is the key risk factor for the foreign currency
loans and GDP is the key risk factor for the home currency loans is confirmed
by the right and left hand plots in Figure 1, which show the expected prof-
its in dependence of single macro risk factor moves, keeping the other macro
risk factors fixed at their expected values. Note the different scales of the two
plots. Expected losses of the FX loan are considerably larger than for the home
currency loan. This plot also shows that expected profits of both loan types
depend non-linearly on the relevant risk factors. The profiles of expected profits
in Figure 1 resemble those of short options. A home currency loan behaves like
a short put on GDP together with a short call on the home interest rate. A
foreign currency loan behaves largely like a short call on the FX rate.

12



Table 1: Systematic macro stress tests of FX loan portfolios for admissibility
domains of different sizes. The top table gives the values of the macro factors along
with the CEP in the worst case scenario. For each risk factor the absolute value in the
worst case scenario is given along with the risk factor change in standard deviations.
The bottom table gives for each worst case scenario the Maximum Loss Contributions
of single risk factor changes and of pairs of risk factor changes. IR denotes the interest
rate r, FX the exchange rate e(1).

Worst Macro Scenario

max. GDP IR FX
Maha abs. stdv abs. stdv abs. stdv CEP

FX B+
2 231.27 -0.10 0.032 0.69 1.420 -1.84 13 180
4 230.95 -0.11 0.039 1.17 1.306 -3.78 -26 138
6 230.85 -0.03 0.046 1.59 1.191 -5.74 -136 009

FX BBB+
2 231.64 -0.14 0.022 0.03 1.646 2.00 14 855
4 230.92 -0.12 0.039 1.15 1.306 -3.78 -9 931
6 230.81 -0.05 0.046 1.59 1.191 -5.74 -135 202

home B+
2 228.31 -1.3 0.04 1.07 15 482
4 224.7 -2.64 0.045 2.1 14 458
6 221.04 -4.01 0.049 3.1 12 676

home BBB+
1 230.06 -0.65 0.038 0.53 15 992
3 226.47 -1.99 0.043 1.57 15 926
5 222.82 -3.35 0.047 2.57 15 710

Maximum Loss Contribution (MLC)

max. single factor moves moves of pairs
Maha GDP IR FX GDP, IR GDP, FX IR, FX

FX B+
2 0.5% 2.6% 51.0% 3.4% 59.1% 89.1%
4 0.0% 0.4% 65.4% 0.5% 70.9% 93.2%
6 0.0% 0.2% 77.0% 0.2% 80.2% 96.7%

FX BBB+
2 0.0% 0.0% 100.0% 0.0% 100.0% 100.0%
4 0.0% 0.0% 34.4% 0.0% 44.5% 85.4%
6 0.0% 0.0% 75.7% 0.0% 79.3% 96.4%
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One could ask why the effort to search for worst case scenarios is necessary
to identify key risk factors. Wouldn’t it be easier to read the key risk factors
from the plots in Figure 1? This would be true if losses from moves in different
risk factors added up. But for certain kinds of portfolios the worst case is a
simultaneous move of several risk factors—and the loss in this worst case might
be considerably worse than adding up the losses resulting from moves in single
risk factors. This is the message of Proposition 2. The effects of simultaneous
moves are not reflected in Figure 1, but they do show up in the worst case
scenarios.

The identification of key risk factors suggests risk reducing counter-actions.
Knowing that the exchange rate is the key risk factor for FX loans, one can
plot the behaviour of CEP in dependence of exchange rate moves, as in the left
hand plots of Fig 1. Breuer et al. [2008] show how FX derivatives can be used
to construct hedges reducing the exchange rate risk of foreign currency loans.
It turns out that FX options can be used to virtually eliminate the dependence
of expected loss on exchange rates—at some fixed level of interest rates and
other macroeconomic factors. But the hedge is not perfect: Firstly it cannot
fully remove dependence of expected losses on exchange rates at other levels of
interest rates, and secondly it can bring to zero only the expectation but not
the variance of losses caused by adverse exchange rate moves.

4 Conclusion

The central message of our paper is that the three principles of the Basel
Committee on Banking Supervision [2005] required for stress tests, Plausibil-
ity, Severity of stress scenarios and Suggestiveness of risk reducing action, can
be systematically implemented within a standard quantitative risk management
framework. In order to do so we need a measure of plausibility that can be for-
mulated using the probability distribution of the risk factors but that does not
suffer from the dimensional dependence of maximum loss. We show that this
concept of plausibility can be formulated by working with regions of a given Ma-
halanobis radius instead than working with regions of given probability mass.
We need to replace the common practice of hand picked scenarios by a sys-
tematic worst case search over the given region of plausibility. Finally we have
to identify the key risk factors and their contributions to maximum loss. The
key contribution to maximum loss may be only revealed if we take into account
simultaneous moves in riks factors.

Our approach has three major advantages compared to standard stress tests
First, it ensures that no harmful scenarios are missed and therefore prevents
a false sense of safety. Second, it does not analyse scenarios which are too
implausible and would therefore jeopardize the credibility of stress analysis.
Third, it allows for a portfolio specific identification of key risk factors. We
hope that the compatibility of our concepts with the standard quantitative risk
management framework used by practcioners make the insights of this paper
useful in practcial stress testing problems.
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5 Proof of Proposition 1

Let us assume that we have n macro risk factors, whose change is governed by a
multivariate elliptically symmetric distribution with covariance matrix Cov and
mean µ. Let us assume that the risk factors are indexed in such a way that the
fixed risk factors have numbers 1, 2, . . . , k. Let us denote by r∗k+1, . . . , r

∗
n the con-

ditional expected values of risk factors rk+1, . . . , rn given that r1, . . . , rk have
their fixed values. Breuer [2008] shows that Maha(r1, . . . rk, r∗k+1, . . . , r

∗
n) =

Maha(r1, . . . rk, r∗k+1, . . . , r
∗
n−1) and that choosing rn = r∗n minimises Maha

among all scenarios with the values of the first n−1 risk factors equal to r1, . . . rk,
r∗k+1, . . . , r

∗
n−1. Repeating this argument for the risk factors rn−1 down to rk+1

yields the Proposition.

6 Proof of Proposition 2

Let f be a real-valued function with continuous second order derivatives on
some domain in Rn. Consider two points X0, X1 ∈ Rn such that the cube with
diagonal points X0, X1 is in the domain of definition of f . f plays the role of
the objective function CEP , X0 is the expected scenario µ, and X1 is some
arbitrary scenario r.
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We use the following short hand notation. For a vector i = (i1, . . . , in) of
ones and zeros write

f(i1...in) := f(xi1
1 , x

i2
2 , ..., x

in
n ).

For an index vector i with only component ij = 1 and all other components
equal to zero we write fj := f(i1...in). For an index vector i with only the
two components ij = ik = 1 and all other components equal to zero we write
fjk := f(i1...in).

Lemma 1. If f has continuous second order derivatives on the cube with diag-
onal points X0, X1 the value of the function f in scenario X1 equals

f(1...1) =
n∑

i=1

fi − (n− 1)f(0...0) +
∑

1≤i<j≤n

Iij , (7)

where

Iij =

x1
i∫

x0
i

x1
j∫

x0
j

∂2f

∂xi∂xj
(x0

1, x
0
2, ..., ui, x

0
i+1, ..., uj , x

1
j+1, ..., x

1
n)dujdui,

for 1 ≤ i < j ≤ n.

Proof. We proceed by induction in the number of variables, n. For n = 1, f is a
function of one variable and eq. (7) reduces to f(1) = f(1). The inductive step
will use also eq. (7) for functions of n = 2 variables, so we prove it separately.
For n = 2 we get

f(x1
1, x

1
2) = f(x0

1, x
1
2) +

x1
1∫

x0
1

∂f

∂x1
(u1, x

1
2)du1

= f2 +

x1
1∫

x0
1

 ∂f

∂x1
(u1, x

0
2) +

x1
2∫

x0
2

∂f

∂x1x2
(u1, u2)du2

 du1

= f2 + f1 − f(00) + I12, (8)

which proves eq. (7) for functions of n = 2 variables.

Now we assume that eq. (7) holds for functions of n variables and show that
it holds for a funtion f of n+ 1 variables. Define the function

h(x1, ..., xn) := f(x1, ..., xn, x
1
n+1).

Eq. (7) for h reads

f(1...11) =
n∑

i=1

fi(n+1) − (n− 1)f(0...01) +
∑

1≤i<j≤n

Iij . (9)

For the function gi(n+1) of two variables defined by

gi(n+1)(x1
i , x

1
n+1) := fi(n+1).
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eq. (8) reads
fi(n+1) = fi + fn+1 − f(0...0) + Ii(n+1). (10)

Substituting eq. (10) into the eq. (9) we get

f(1...1) =
n∑

i=1

(
fi + fn+1 − f(0...0) + Ii(n+1)

)
−(n− 1)fn+1 +

∑
1≤i<j≤n

Iij

=
n+1∑
i=1

fi − nf(0...0) +
∑

1≤i<j≤n+1

Iij , (11)

which is eq. (7) for the function f of n+ 1 variables. This finishes the proof of
Lemma 1.

Lemma 1 gives a simple approximation of the change of f between two points
X0, X1:

f(1...1)− f(0...0) ≈
n∑

i=1

(fi − f(0...0)) . (12)

The approximation error is
ε =

∑
1≤i<j≤n

Iij . (13)

If the function f represents portfolio values, the left side of eq. (12) represents
portfolio profit changes when moving from scenario X0 to scenario X1. The
right side is the sum of contributions of the individual risk factors. The error
term ε describes the interaction between the risk factors. It is bounded by

|ε| ≤ K (n− 1)n
2

||X1
n −X0

n|| (14)

if the absolute values of second order mixed derivatives are bounded by some
constant K. As a consequence, the approximation (12) is exact when the second
ordered mixed derivatives vanish everywhere in the cube with diagonal points
X0, X1. The following Lemma also establishes the converse.

Lemma 2. Assume f has continuous second order derivatives. The following
two statements are equivalent:
(1) For any two X0, X1

f(1...1)− f(0...0) =
n∑

i=1

(fi − f(0...0)) (15)

(2) for all X and for all i, j, 1 ≤ i < j ≤ n

∂2f

∂xi∂xj
(X) = 0 (16)
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Proof. Eq. (16) implies eq. (15) directly by the definition of Iij and Lemma 1:
If for all X in the cube with diagonal points X0, X1 and for all pairs (i, j) we
have ∂2f/∂xi∂xj(X) = 0, then by definition of Iij we have Iij = 0. Eq. (15) is
implied by eq. (7).

Eq. (15) implies eq. (16) as follows. Assume there is some X and some i, j
for which ∂2f/∂xi∂xj(X) > 0 (resp. < 0). Then the continuity of the second
order derivatives implies the existence of a neighbourhood O(X) contained in
the cube, such that ∂2f/∂xi∂xj(Y ) > 0 (resp. < 0) for all Y in O(X). Take
two scenarios X0, X1 in O(X) such, that x0

k < x1
k for k ∈ {i, j} and x0

k = x1
k for

k /∈ {i, j}. Then from the definition of Iij we get Iij > 0 (resp. < 0) and Ikl = 0
for (k, l) 6= (i, j). From eq. (7), we get f(1...1)−f(0...0) >

∑n
i=1 (fi − f(0...0)) if

∂2f/∂xi∂xj > 0, resp.f(1...1)−f(0...0) <
∑n

i=1 (fi − f(0...0)) if ∂2f/∂xi∂xj <
0. This finishes the proof of Lemma 2.

Lemma 3. Assume f has continuous second order derivatives. The following
two statements are equivalent:
(1) For all X and for all i, j, 1 ≤ i < j ≤ n

∂2f

∂xi∂xj
(X) = 0 (16)

(2) f can be written as

f(x1, x2, ..., xn) =
n∑

i=1

gi(xi). (17)

Proof. (17) implies (16) by direct derivation. (16) implies (17) by induction
in the number of variables, n. For n = 2 assume that all cross derivatives
vanish. Then ∂f(X)/∂x1 = h(x1), resp. f(X) = H(x1) + g2(x2). Choosing
g1(x1) = H(x1) we get eq. (17) for n = 2:

f(X) =
2∑

i=1

gi(xi). (18)

In the induction step assume that (16) implies (17) for functions of n variables.
Take a function f of n + 1 variables with continuous second order derivatives.
First we will show that f can be written as

f(X) = uj(x1, xj , ..., xn+1) + vj(x2, ..., xn+1), (19)

for j = 2, ..., n+ 1. For j = 2 we can take u2 = f and v2 = 0.
Now assume that the separation is possible up to component j. As the function
vj does not depend on the variable x1 we get

∂2f

∂x1∂xj
=

∂2uj

∂x1∂xj

which equals zero because of the induction basis (16). Applying (18) to uj(x1, xj , ...,
xn+1), regarded as a function of x1 and xj , we get

uj(x1, xj , ..., xn+1) = uj+1(x1, xj+1, ..., xn+1) + hj(xj , ..., xn+1).

20



Denoting vj+1 := vj + h we get

f(X) = uj+1(x1, xj+1, ..., xn+1) + vj+1(x2, ..., xn+1).

For j = n+ 1 (19) gives

f(X) = un+1(x1, xn+1) + vn+1(x2, ..., xn+1). (20)

As vn+1 does not depend on x1, we infer from eq. (16)

∂2un+1

∂x1∂xn+1
=

∂2f

∂x1∂xn+1
= 0.

Applying again eq. (18) to the function un+1 we get

un+1(x1, xn+1) = g1(x1) + h(xn+1).

and thus
f(X) = g1(x1) + h(xn+1)vn+1(x2, ..., xn+1).

For i, j ∈ {2, . . . , n+ 1} we get from (16)

0 =
∂2f

∂xi∂xj
(X) =

∂2g1(x1)
∂xi∂xj

+
∂2

∂xi∂xj
(h(xn+1) + vn+1(x2, ..., xn+1))

=
∂2vn+1

∂xi∂xj
(x2, ..., xn+1)

The function vn+1 is a function of n variables with all mixed second orders
derivatives equal to zero. From the assumption of the induction step we get
(17) for the function f of n+ 1 variables.

The defintion of the Loss Contribution in eq.(1) can be written as

LC(i, r) :=
fi − f(0...0)

f(1...1)− f(0...0)
, (21)

assuming f(0...0) 6= f(1...1), and taking X0 = µ, X1 = r, f = CEP . Lem-
mata 2 and 3 imply that

n∑
i=1

LC(i, r) = 1

holds for all r if and only if the function CEP can written as a sum (17) resp.
if and only if the second order derivatives vanish identically.

7 Proof of Proposition 3

Proof. Let f be a real-valued function with continuous second order derivatives
on some domain in Rn. Consider two points X0, X1 ∈ Rn such that the cube
with diagonal points X0, X1 is in the domain of definition of f . f plays the role
of the objective function CEP , X0 is the expected scenario µ, and X1 is an
arbitrary scenario r. In addition to the notation f(i1i2 . . . in) and fi introduced
in the proof of Proposition 2 we use

fI := f(i1...in), ik =
{

1 k ∈ I
0 k /∈ I ,

We need the following Lemma.
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Lemma 4. Assume f has continuous second order derivatives. Then for any
two scenarios X0, X1 ∈ Rn

f(1 . . . 1)− f(0 . . . 0) =
s∑

k=1

(fIk
− f(0 . . . 0)) +

∑
1≤k<l≤s

Ĩkl, (22)

where

Ĩkl :=

1∫
0

1∫
0

∑
k∈Ik,l∈Il

(x1
k − x0

k)(x1
l − x0

l )
∂2fn

∂xk∂xl
(y1, ..., yn)dudv

with

yi =


x0

i + u(x1
i − x0

i ) i ∈ Ik,
x0

i + v(x1
i + x0

i ) i ∈ Il,
x1

i i > max(Il)
x0

i otherwise

(23)

Proof. Define a function f̃ : Rs → R as

f̃(y1, . . . , ys) := f(g1(y1), ..., gs(ys)), (24)

with
gk(t) := X0

Ik
+ t
(
X1

Ik
−X0

Ik

)
(25)

for 0 ≤ t ≤ 1 and 0 ≤ k ≤ s. Applying Lemma 1 to f̃ we get eq. (22) and
Ikl = Ĩkl.

Proposition 3 follows from applying Lemmata 2 and 3 to f̃ .

22



 
 

Index of Working Papers: 
 
March 20, 2006 Claudia Kwapil, 

Johann Scharler 
118 Interest Rate Pass-Through, Monetary 

Policy Rules and Macroeconomic Stability 
 

March 24, 2006 Gerhard Fenz, 
Martin Spitzer 

119 An Unobserved Components Model to 
forecast Austrian GDP 
 

April 28, 2006 Otmar Issing  
(comments by Mario 
Blejer and Leslie 
Lipschitz) 
 

120 Europe’s Hard Fix: The Euro Area 

May 2, 2006 Sven Arndt 
(comments by Steve 
Kamin and Pierre 
Siklos) 
 

121 Regional Currency Arrangements in North 
America 

May 5, 2006 Hans Genberg 
(comments by Jim Dorn 
and Eiji Ogawa) 

122 Exchange-Rate Arrangements and Financial 
Integration in East Asia: On a Collision 
Course? 
 

May 15, 2006 Petra Geraats 123 The Mystique of Central Bank Speak 
 

May 17, 2006 Marek Jaroci�ski 124 Responses to Monetary Policy Shocks in the 
East and the West of Europe: A Comparison 
 

June 1, 2006 Josef Christl 
(comment by Lars 
Jonung and concluding 
remarks by Eduard 
Hochreiter and George 
Tavlas) 
 

125 Regional Currency Arrangements: Insights 
from Europe 
 

June 5, 2006 Sebastian Edwards 
(comment by Enrique 
Alberola) 
 

126 Monetary Unions, External Shocks and 
Economic Performance 

June 9, 2006 Richard Cooper 
 

Michael Bordo and 
Harold James 

(comment on both 
papers by Sergio 
Schmukler) 

 

127 Proposal for a Common Currency among 
Rich Democracies 

One World Money, Then and Now 



 
 

June 19, 2006 David Laidler 128 Three Lectures on Monetary Theory and 
Policy: Speaking Notes and Background 
Papers 
 

July 9, 2006 Ansgar Belke, 
Bernhard Herz, 
Lukas Vogel 

129 Are Monetary Rules and Reforms 
Complements or Substitutes? A Panel 
Analysis for the World versus OECD 
Countries 
 

August 31, 2006 John Williamson  
(comment by Marc 
Flandreau) 
 

130 A Worldwide System of Reference Rates 

September 15, 
2006 

Sylvia Kaufmann, 
Peter Kugler 

131 Expected Money Growth, Markov Trends 
and the Instability of Money Demand in the 
Euro Area 
 

September 18, 
2006 

Martin Schneider, 
Markus Leibrecht 

132 AQM-06: The Macroeconomic Model of the 
OeNB 
 

November 6, 
2006 

Erwin Jericha and 
Martin Schürz 

133 A Deliberative Independent Central Bank 
 
 

December 22, 
2006 

Balázs Égert 134 Central Bank Interventions, Communication 
and Interest Rate Policy in Emerging 
European Economies 
 

May 8, 2007 Harald Badinger 135 Has the EU’s Single Market Programme 
fostered competition? Testing for a decrease 
in markup ratios in EU industries 
 

May 10, 2007 Gert Peersman 136 The Relative Importance of Symmetric and 
Asymmetric Shocks: the Case of United 
Kingdom and Euro Area 
 

May 14, 2007 Gerhard Fenz and 
Martin Schneider 

137 Transmission of business cycle shocks 
between unequal neighbours: Germany and 
Austria 
 

July 5, 2007 Balázs Égert 138 Real Convergence, Price Level 
Convergence and Inflation Differentials in 
Europe 
 

January 29,  
2008 

Michał Brzoza-
Brzezina,  
Jesus Crespo 
Cuaresma  
 

139 Mr. Wicksell and the global economy: 
What drives real interest rates? 



 
 

March 6, 2008 Helmut Stix 
 

140 Euroization: What Factors drive its 
Persistence? 
Household Data Evidence for Croatia, 
Slovenia and Slovakia 
 

April 28, 2008 Kerstin Gerling 
 

141 The Real Consequences of Financial Market 
Integration when Countries Are 
Heterogeneous 
 

April 29, 2008 Aleksandra Riedl and 
Silvia Rocha-Akis 

142 Testing the tax competition theory:  
How elastic are national tax bases in 
Western Europe? 
 

May 15, 2008 Christian Wagner 143 Risk-Premia, Carry-Trade Dynamics, and 
Speculative Efficiency of Currency Markets 
 

June 19, 2008 Sylvia Kaufmann 144 Dating and forecasting turning points by 
Bayesian clustering with dynamic structure: 
A suggestion with an application to Austrian 
data. 
 

July 21, 2008 Martin Schneider and 
Gerhard Fenz 
 

145 Transmission of business cycle shocks 
between the US and the euro area 
 

September 1, 
2008 

Markus Knell 
 

146 The Optimal Mix Between Funded and 
Unfunded Pensions Systems When People 
Care About Relative Consumption  
 

September 8, 
2008 

Cecilia 
García-Peñalosa  
 

147 Inequality and growth: Goal conflict or 
necessary prerequisite? 
 

September 30, 
2008 

Fabio Rumler and 
Maria Teresa 
Valderrama  

148 Comparing the New Keynesian Phillips 
Curve with Time Series Models to Forecast 
Inflation 
 

January 30, 
2009 

Claudia Kwapil, 
Johann Scharler 

149 Expected Monetary Policy and the 
Dynamics of Bank Lending Rates 
 

February 5, 
2009 

Thomas Breuer, 
Martin Janda�ka, 
Klaus Rheinberger, 
Martin Summer 
 

150 How to find plausible, severe, and useful 
stress scenarios 

 


	WP150_titel.pdf
	WP150_11.2.09.pdf
	WP150_editorial.pdf
	BJRS-MacroStress-OeNB-WP-29012009_10.2..pdf
	WP150_index.pdf




