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Editorial

In this paper Helmut Elsinger and Martin Summer anayze the pricing of risky
income streams in a world with competitive security markets and portfolio
constraints. The authors investigate how one can transfer concepts and pricing
techniques from a world without frictions to such a more redistic situation.
Basicaly two new aspects arise: The no arbitrage condition has to be replaced
by a weaker concept, which is called no unlimited arbitrage. Furthermore an
appropriate technique is required for deriving from this concept a pricing theory
for contingent clams. The authors show how to achieve this task in a smple
way, which is applicable to many relevant constraint situations.
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Abstract

We analyze the pricing of risky income streams in a world with competitive
security markets where investors are constrained by restrictions on possible portfo-
lio holdings. We investigate how we can transfer concepts and pricing techniques
from a world without frictions to such a more realistic situation. We show that
basically two new aspects arise: First, portfolio constraints can lead to situations
where not all arbitrage opportunities are necessarily eliminated. For a world with
portfolio constraints the concept of no arbitrage has to be replaced by a weaker
concept which we call no unlimited arbitrage. Second, though we can characterize
prices which allow no unlimited arbitrage by the existence of certain state prices
as in the unconstrained case, additional computational work is needed for deriving
from this fact a pricing theory for contingent claims. We propose a technique which
can achieve this task and which renders itself for a computationally simple imple-
mentation for many constraint situations which are of practical interest. The power
of no arbitrage techniques is preserved in the sense that no specific assumptions
about utility functions of investors have to be made. We relate our analysis to the
optimal decision problem of an investor and show the various relations between the
properties of an optimal solution to this problem and the arbitrage-free values of
risky income streams. This opens a unified view on the different approaches to asset
pricin% under portfolio constraints used in the literature and conveys their common
underlying logic.
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1 Introduction

Pricing securities and risky income streams by no arbitrage arguments has become the corner-
stone of modern asset pricing theory. No-arbitrage arguments have also been an impressive
practical success. The valuation techniques derived from them have become the daily tools and
workhorses of thousands of practitioners and financial engineers worldwide. The idea of no arbi-
trage is simple. It requires that correctly priced securities should make it impossible to achieve
by financial transactions a consumption bundle at zero costs that increases some investor’s util-
ity. This idea ultimately relies on an equilibrium argument and has powerful implications for
asset pricing formulas. A great deal of this power comes from the fact that the question whether
or not security prices do allow arbitrage, can be inferred from observable data: the prices of
actively traded securities and their payoff structure. We do not have to know the entire equi-
librium. Moreover once the ”correct” security prices have been found, the price of any risky
income stream which can be generated by combinations of these securities is determined. Thus
security pricing by no arbitrage leads to a general valuation technique for arbitrary contingent
claims, which can be generated from securities traded on financial markets.

Yet the formulas are derived under highly idealized conditions. Among them, perfect competition
and frictionless security trading are the two most important ones. Evidence as well as practical
experience suggests that the assumption of price taking behavior is to a large extent fairly
appropriate for financial markets for standard securities, such as options, futures, stocks and
bonds. The assumption of frictionless trading - however - is surely inappropriate. Margin
requirements, short selling restrictions, borrowing constraints and collateral requirements belong
to the basic facts of (financial) life, even for the most competitive financial markets.

In this paper we ask whether and how we can transfer the power and the simplicity of pricing a
risky income stream by no arbitrage arguments to a world where such constraints bind investors
in their portfolio decisions. The answer we get is that this transfer is indeed possible but we
have to introduce a new concept and we have to do some extra computational work. First of all
it turns out that once portfolio constraints are taken into account the requirement that financial
markets admit no arbitrage is too restrictive. We argue that the appropriate criterion we have to
use in a world with frictions, is a concept which we call no unlimited arbitrage. Constraints can
lead to situations where not all arbitrage opportunities are eliminated in equilibrium because
the constraints prevent investors to fully take advantage of them. In parallel to the frictionless
world we can characterize the requirement that financial markets admit no unlimited arbitrage
by the existence of certain state prices. Unfortunately, contrary to the unconstrained world we
are not ready for pricing income streams after we have obtained such a characterization of no
unlimited arbitrage. We show that for any income stream that can be replicated we have to
find among all the candidate state prices, the ”correct” ones for a particular income stream. We
propose a computationally simple procedure which is able to accomplish this task. It can be set
up from the basic data of security prices, financial contracts with their payoff structure and the
relevant constraints on feasible portfolio positions. We are thus able to present a pricing theory
for arbitrary contingent claims that can be replicated by existing securities under constraints
without requiring any particular knowledge of investor utility functions beyond some general
assumptions on the structure of preferences.

Since it is our aim to analyze and clarify some of the conceptual questions that arise in transfer-
ring arguments in the spirit of no-arbitrage to a framework where investors are constrained in
their potential portfolio holdings, we have decided to use a framework, which has the minimal



structure that is able to address the issues in a meaningful way. The reader initiated to modern
asset pricing theory and security pricing might thus perhaps miss the rich stochastic structure
which has become a trade mark of this literature. We present our arguments in a framework
that is stripped to the bare essentials to convey the basic logic of pricing contingent claims under
constraints. Our results do however not depend on the simplified framework and can easily be
generalized to richer setups.

The paper is organized as follows: Since at first sight all the different contributions to the
pricing problem under constraints seem to offer their own (idiosyncratic) approach we have
decided to start in section 2 with a discussion of the literature to put the papers including our
own contribution into perspective. Section 3 gives an exposition of the model and introduces
the formal description of constraints along with some examples. Section 4 describes the feasible
income transfers in financial markets with portfolio constraints. Section 5 characterizes no
unlimited arbitrage in terms of state prices. Section 6 demonstrates how this characterization
can be used to price an arbitrary contingent claim by no unlimited arbitrage. Section 7 contains
results which show the connections between the no arbitrage pricing approach and optimal
investor decision problems. The final section 8 concludes. All proofs are in the appendix.

2 Related Research

We do not claim to be the first authors treating security pricing in the presence of portfolio
constraints. In fact there is a growing literature on this topic building on a stock of seminal
papers. To our best knowledge our paper is the first to propose the concept of no unlimited
arbitrage as an appropriate tool for analyzing security markets with constraints and to derive
suitable valuation techniques from this concept.! Our aim is to develop a framework in which
conceptual issues can be discussed in a transparent way and which is capable to bring different
approaches in the literature into a unified perspective.

In the following we give an overview on the recent literature on portfolio constraints which is most
closely related to the ideas discussed in our paper. We suggest to classify the papers according
to two broad categories. The literature in the first category approaches the valuation problem
with constraints by extending a classical paper by Harrison and Kreps [21] (see also Kreps [26])
which discusses the case of an unconstrained financial market. The primitives by which the
problem is approached there is an abstract linear space of met-trades together with a linear
pricing function defined on this space. These two objects reflect in an abstract way frictionless
trading of arbitrary risky income streams (the linear space property) and perfect competition
(the linearity of the pricing functional). It is assumed that the economy is populated by agents
with preferences over net trades about which some general properties are known. Among these,
monotonicity (”more is better”) is the most important one. In this context the question is asked:
When can the pricing functional together with the feasible net trades be part of an economic
equilibrium, if agents are known to have these general properties? (see Kreps [26, p. 20]) The
answer to this question is then given by a characterization of a no arbitrage requirement via the
existence of certain state prices. Thus the general idea is to approach the valuation problem
without postulating a specific structure on agents’ preferences besides of some general properties.
This general idea is then extended to a world with financial constraints. The literature in the

!However Charupat and Prisman [7] in a critical note on a paper by Chen [8] have pointed out conceptual
problems arising by naively transferring the no arbitrage conditions from a frictionless world to a world with
constraints.



second category approaches the valuation problem by building on the analysis of solutions to
an optimization problem of a representative investor, who can put his wealth into a riskless
bank account and a set of risky securities the prices of which follow some stochastic process.
The valuation question in this framework is answered by pricing any contingent claim using
the utility gradient of the representative investor. Thus the general idea in this approach is
to postulate a specific utility function and a specific stochastic model of security prices to add
portfolio constraints and analyze the value of some given claim by solving the representative
investor’s utility maximization problem.

Our approach is in the spirit of the first category. Important papers in this literature are He
and Pearson [20], Jouini and Kallal [24], [25], Huang [22]. Jouini and Kallal formulate their
model by restricting the framework of Harrison and Kreps [21]. They take a convexr cone?
of net trades (instead of a linear space) and a sublinear pricing function (instead of a linear
one) for contingent claims as a primitive.® Using these primitives, no arbitrage is characterized
when some general properties on investors’ preferences are assumed. Our model contains the
result of characterizing no arbitrage, when net trades are constrained to be in a cone as a
special case. Contrary to Jouini and Kallal, we take some effort to model in detail the role
of security prices and financial markets for the pricing of arbitrary contingent claims. We
achieve this by working in a slightly less abstract framework clearly distinguishing financial
markets, the prices of securities and arbitrary contingent claims which can be generated by
these securities under constraints as separate objects. We are thus able to make fully transparent
under which conditions linear security prices (competition) and portfolio constraints (frictions)
interact to actually imply a sublinear pricing function for arbitrary contingent claims. Huang
(1998) conducts a similar analysis to ours in an infinite horizon event tree setting for the special
case of constraint sets which are cones. Our paper discusses a more general class of constraints,
because there are practically important situations for which this is indeed required. Furthermore,
contrary to Huang, we discuss conceptual issues at some length and analyze the relation between
no arbitrage, no unlimited arbitrage and optimal portfolio decision problems. Due to this aspect
of our paper, we are able to also contribute to issues discussed in the literature on financial
innovation, as documented by the papers of Allen and Gale [1], Chen [8] and Charupat and
Prisman [7]. The paper of He and Pearson [20] in contrast to ours considers a smaller class
of constraints. They give a characterization of arbitrage free prices under constraints for this
special case but when they make use of the characterization to value an arbitrary contingent
claim, they have to use a utility function. Resort to a utility function can be avoided in our
approach.

Seminal papers in the second category are Cvitani¢ and Karatzas [11],[12]. These papers con-
sider general convex constraint sets and have inspired further research, most notably Cuoco
9], Munk [29], [30], Tepla [35] and Detemple and Murthy [16]. Cvitani¢ and Karatzas have
developed a technique which exploits duality theory in a skillful way to get arbitrage-free prices
for contingent claims in a representative investor framework with portfolio constraints, where
security prices follow a Brownian motion. Though we do not use this approach our discussion
of optimal investor decisions and arbitrage free prices under constraints clearly conveys how the
Cvitani¢ and Karatzas approach is related to the literature of category one. As a by-product we

2 A non empty subset C of a real vector space V is called a convez cone,if z € C, A > 0= Az € C, Vz,y € C:
z+y € C (see Luenberger [27, p.18]).

3 A real valued function f defined on a real vector space V is said to be sublinear on V if f(z+y) < f(x)+ f(y)
for all z,y € V and f(Az) = Af(z) for all A > 0 and z € V. As an example, consider any norm on V. By
definition the norm is a real valued function, which is positive, homogeneous and fulfills the triangle inequality,
hence is a sublinear function (see Luenberger [27, p. 110]).
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demonstrate under which conditions their approach could be employed without making reference
to a specific representative investor optimization problem (thus to a particular utility function).

In the context of the literature, our paper has the following contributions: First, we demonstrate
in an elementary way how ideas of asset pricing by no arbitrage can be transferred to a world
with portfolio constraints. Second, we derive a practical and computationally simple technique
to value arbitrary (redundant) contingent claims under constraints using only basic information
about traded securities, their prices and the constraint situation. Third, we show in a transparent
way how competitive security prices and trading frictions interact to restrict the valuation of
arbitrary contingent claims, thus highlighting the role played by (competitive) financial markets.
Fourth, we unify the different approaches by conveying the underlying logic of the arguments
and show how the papers which we have classified into two categories, are related.

3 The Finance Model With Portfolio Constraints

Consider the standard general equilibrium, finance model in its simplest version. There are
two dates t = 0,1 and a finite set S = {1,..., S} of states of the world at date 1, describing
uncertainty. There is a finite set Z = {1, ..., I} of investors who wish to exchange a (numeraire)
good, which we could think of as income. In order to do so they can competitively trade a finite
set J ={1,...,J} of financial contracts in quantities z at prices ¢ at date 0. Financial contracts
are promises to some payoff of the good in the different states at date 1 and are represented
by a S x J matrix A.* Investors are characterized by a continuous, strictly quasi-concave, and
strictly monotone utility function u’ : RS*! — R and a vector w' € RY%! of initial endowments
of the good.

For the formal description of constraints, we assume that each investor ¢ € Z can choose his
portfolios z consisting of positions in the J contracts traded on the market not from R’ as it
is usually assumed, but only from a closed, convex set Z C R”. To be precise we require

Assumption (CON): Each Investor i € T may choose his portfolio z* from a closed, convex
set Z C R7, which is non-trivial, i.e. Z # {0} and which contains 0.

Assumption (CON) allows to describe a fairly large class of practically important restrictions
on portfolio holdings. To see this, let us consider some examples.

Example 1 Margin Requirements: Margin requirements are common practice in Security
trading. In particular in derivative trading investors are required to keep margin accounts, which
represent a performance bond. Margins are set by regulators, clearing houses and intermediaries.
Many of the common margin requirements can be described by (CON). The particular form will
depend on the specific margin requirement considered. An example of a margin requirement is
for instance that security positions can only be chosen from the set

Z:{zeRJ|quj>—quzf0rmj€7€++, jeJ}.

"We adopt the convention that all entries in A are non negative. In some parts of the finance literature such
securities are called limited liability assets. Since we don’t include into the model problems of bankruptcy and
default, following the mainstream of the literature on asset pricing, this assumption can be made without loss of
generality. The results do not depend on this assumption.



Thus the ability of investors to short sell certain securities is limited by the requirement to
maintain an income margin, which is a (linear) function of their creditworthiness. Note that this
example refers to margins in derivatives markets. A slightly different issue are margins required
in equity trading. There the margin has the function of a down payment for the purchase of
an equity and is de facto like a loan. When we talk of margin requirements we mean margin
accounts with a performance bond function as it is common for instance in futures trading.

Example 2 Collateral Requirements: Some securities traded on competitive financial mar-
kets can be used as debt instruments and have to be secured by an asset or a pool of assets,
which are often other securities. Examples are collateralized swap contracts, collateralized mort-
gage obligations, collateralized depository receipts or collateralized bond obligations. One way
to describe such constraints by (CON) can for instance be as follows: Let us divide a portfolio
z € R’ into assets and liabilities, depending on whether z; > 0 or z; < 0. Denote assets by
2t = (max[(),zj})jzl and liabilities by z~ = (min[O,zj])]le. The requirement that liabilities are
partially collateralized by assets can the be written in terms of the set Z as

Z = {zERJ | —qz~ < gz, 0 ¢ [0,1}}.

Example 3 Portfolio Mix Constraints or Target Ratios: Constraints on the mix of a
portfolio or target ratios for specific assets are common in security trading. These constraints
can come from various sources, for instance regulations or corporate financial policies. Whenever
we have a situation where constraints of this sort occur, we can use (CON) to describe it. In
this cases the set Z can be described as

Z:{ZERJ|aquj§qkzk§5quj withk,jGJ,OSagﬁ}.

Huang [22] has modelled debt to equity ratios in this way. These constraints require investors to
keep the ratio of asset k and j in a certain range determined by the bounds o and (3.

Example 4 Bid-Ask Spreads and Taxes: Assumption (CON) is also able to model trading
frictions expressed by different bid and ask prices, as studied for instance by Jouwini and Kallal
[25]. This can be formalized by considering two financial contracts A7, AF, j .k € J with an
identical payoff structure (i.e. A = AF) one of which can’t be sold short (29 > 0), whereas there
is a buying constraint on the other one (2F < 0). As an evample think of a riskless bank account,
which can be used for saving and borrowing. This can be modelled as two uncontingent income
streams 1 G'Ri for the savings and for the borrowing account. The savings account must not be
sold short, whereas the borrowing account can only be held in negative amounts. The restriction
de facto makes two different assets out of A7, A¥ which will be reflected in different prices. The
difference between these prices can be interpreted as a bid-ask spread. By the same logic one
could use (CON) to describe the effects of taxes as in Prisman [32] or in Dybvig and Ross [18]

From a formal viewpoint in all these examples Z is a convex cone. This is the case almost
exclusively dealt with in many papers on arbitrage and portfolio constraints. However to capture
some important additional portfolio constraint situations, which are practically relevant, let us
point out that our weaker requirement that Z is just a (closed and) convex subset of R” is
indeed necessary. To see this consider the following;:



Example 5 Short Selling Limits and Buying Floors: Many securities are restricted in
the amount that can be sold short. Stocks can usually not be sold short in large amounts or only
at a very high cost. Buying constraints can occur, when some legal restrictions prevent holding
of particular securities above some given threshold prescribed by the requlation. Constraints of
this nature can easily be described by (CON). Consider for example different short selling limits
on securities © = 1, ...,k and buying floors for securities j = k+1,...,J, then

Z={2€R |22, zi <w, Li,u; ERwithj=1,...k, i=k+1,..,J}.

For | # 0 or u # 0 the constraints do not generate a cone but rather a translation of a cone. Let
p = (l,u) then Z — p is a cone. Following Luenberger [27] we will call this a cone with vertex
p. From a formal point of view these constraint sets are almost like the cones discussed in the
major parts of the literature but not quite. We will see that the role played by the vertex p is
not as innocuous as one might assume at first sight. Note that the constraint set need not have
a linear structure. If feasible portfolio holdings are functions of risk measures like Value at Risk
feasible portfolio holdings might for instance become functions of volatility parameters.

Example 6 Capital Adequacy: Constraints of the sort described in the previous erample
have become of particular interest during the last years, where capital adequacy has dominated
the requlatory debate about financial markets. Capital adequacy is a risk management concept
which requires that the capital of a financial organization is sufficient to protect its counterparties
and depositors from on- and off-balance sheet market risks, credit risk, etc. The European Union
has recently implemented capital adequacy rules and they have become particularly important
in portfolio insurance. Capital adequacy rules work like a minimal capital requirement (see
Bardhan [}]). The requirement can be a function of risk measures like for instance Value at Risk

(Jorion [23]).

Example 7 Risk Based Capital Requirements: Sometimes capital market requlations can
lead to constraint situations, where the portfolio set Z is bounded. Cuitani¢ [10] gives as one
particular example situations where feasible security holdings are limited in potential long and
short positions. For instance the regulation of insurance companies sometimes prescribes so
called risk based capital requirements. These requirements limit the amounts that can be invested
into assets of a certain (default) risk class. Combined with short selling limits such constraints
lead to a set Z, which can’t be described by a cone or a cone translation.

These two examples belongs to a class of constraints which are of considerable practical im-
portance. However in these cases Z is not a cone but rather just a closed and convex set.
Assumption (CON) allows to describe these cases.

This discussion demonstrates that the consideration of more general constraint sets than those
which are usually dealt with in large parts of the literature is indeed required to cover important
situations occurring in the practice of financial markets.

Let us finally note that assumption (CON) is used in different, essentially equivalent, versions.
For instance, a seminal paper by Cvitani¢ and Karatzas [11] works with constraints on pro-
portions of initial endowment w*® invested in various available assets (see also the textbook by
Pliska [31]). Some authors model direct constraints on dollar amounts that can be invested. All
these approaches can easily be translated into each other. In our view the description chosen



here allows a particularly transparent description of the relation between competitive financial
markets, portfolio constraints, state prices and the implied contingent claim values.

Note that Z contains 0. This property of the portfolio constraints is natural because a reasonable
model should always allow for not making any financial market transactions and just consuming
the endowment, whatever the constraints may be.

As a formal object the financial market model is a tuple & = {(u’,w?)L_;, (A4, Z)}.

4 Achievable Income Transfers Under Constraints

Investors achieve consumption indirectly via competitive security trading. Because of portfolio
constraints, however, each investor is confined to a restricted (future) consumption profile de-
pending on the constraint set Z. If we add to A as the first row the vector —¢ to form a new
matrix

_ | 4
[

we can write the net income transfers achievable for consumer 4 by holding a portfolio 2* € Z
as

=Tz, el (2)
Using (2) we can define the feasible income transfers induced by the financial market. Let us
introduce the following definition:
Definition 1 The set of feasible income transfers induced by (T, Z) is denoted by

C={reR* |r=T2, 2€Z}.

Since Z is a closed, convex set, and 7T is a continuous linear transformation, the set of achievable
income transfers will also be convex. Indeed we can assert:

Lemma 1 The set C of feasible income transfers is a convex subset of RST! containing 0.

Proof: Appendix. O

Unfortunately the set C does not necessarily inherit the closedness of Z.> We preclude such a
situation by assumption.

Assumption (CONC): Each Investor i € I may choose his portfolio z* from a closed, convex
set Z C R, which is non-trivial, i.e. Z # {0} and which contains 0. Z, A and q are such that
C is closed.’

Since many practically important portfolio constraints can be formally described as cones or
translations of cones, we want to know whether the set of feasible income transfers inherits this
structure from Z.

Sufficient conditions that C will inherit the closedness property from Z under the mapping T would for
instance include the cases where Z is compact or polyhedral.
% An assumption similar to this is used in a different context by Ross [34].



Lemma 2 If Z is a convex cone with vertex p, C is a convex cone with vertex Tp.

Proof: Appendix. O

5 Arbitrage and Portfolio Constraints

A central idea of modern asset pricing theory is the explanation of the value of securities by
analyzing security prices ¢ € R’ which allow no arbitrage. Essentially this requirement expresses
the idea that in any equilibrium” it should not be possible, by trading securities, to achieve a
consumption bundle at zero costs that increases some investor’s utility (see Kreps [26]). The
reason is that investors with monotone preferences would then wish to take an unlimited position
in the arbitrage portfolio to generate an unlimited consumption profile. The ability to take
arbitrary portfolio positions is therefore one essential building block of pricing arguments which
invoke a no arbitrage condition.

Though ultimately the pricing of risky income streams by no arbitrage indirectly relies on an
equilibrium argument, much of its power comes from the fact that the question whether or not
security prices are arbitrage free (and can therefore be part of some equilibrium) can be inferred
from the payoff structure of securities, the matrix A and the observed security prices q. There
is no need to know the entire equilibrium. A famous theorem of finance (see for instance Duffie
[17]) demonstrates for the standard finance model that the absence of arbitrage is equivalent to
the existence of implicit (strictly) positive values of income in the different states of the world
- the so called state prices - such that the value of any security is exactly equal to the value
of the future income stream it provides under these state prices. It can therefore be checked
from (g, A) alone whether or not there is an arbitrage possibility. On this limited information
it is thus possible to find out which ¢’s are consistent with some equilibrium. Strictly positive
state prices which make securities zero-profit investments, characterize the absence of arbitrage
in the standard finance model.

Most of the models transferring this kind of argument to a world with constraints work with a
generalization exactly along these lines. It can be formulated in analogy to the unconstrained
case: The financial market (g, 4, Z) allows no-arbitrage if there exists no z € Z with Tz > 08.
Written in a slightly less condensed form the definition requires that there does not exist a z € Z
with —gz > 0 and Az > 0 where at least either the first or one of the other S inequalities is
strict.

However, when we consider general situations of convex constraints as formalized by assumption
(CON) and illustrated by the various examples we gave before we have to be careful since such a
characterization might be too strong and we need a slightly weaker criterion. The problem which
arises when we consider constraints in the class described by (CON) can perhaps most clearly
be seen in a toy example where Z is a cone with vertex p. The basic message of the example
is that portfolio constraints can lead to a situation where security prices can allow in principle
financial transfers that imply limited arbitrage opportunities. This situation can nevertheless
be consistent with some equilibrium, since constraints make it impossible for individuals to take
any advantage of them.

"For a formal definition of an equilibrium for a model with financial markets with no portfolio constraints see
for instance Magill and Quinzii [28, Definition 8.2.].

8The inequality « > 0 for a vector 2 € R"™ means that all components of the vector are nonnegative and not
all of them are zero. We have z > 0 < z € R’} and z # 0.



Example 8 Consider a model with no uncertainty, so that S = {1}. There are two investors
i = 1,2 with endowments w! = (8,1) and w? = (2,14) who have both identical preferences
described by the utility function

u'(xf, 2}) = log(zh) + log(z})

The payoff matriz of financial contracts is given by A = (1,1) and the constraint set is given

by Z = [—2,00) X (—00,2]. So there is a short selling limit on security one and a buying
floor on security two. Now it is easy to check that the security prices ¢* = (1,1/2) and the
consumption and security demands x** = (5,5) and x** = (5,10), z* = (2,2) and 2% =

(—2,—-2) form an equilibrium for this economy because at these prices each investor has solved
his utility maximization problem and in the market for the good and for securities supply and
demand are balanced.’ The example can perhaps most clearly be seen by looking at Figure 1,

which shows the equilibrium.

Insert Figure 1 about here.

Figure 1: With portfolio constraints the financial markets need not be arbitrage free even in
equilibrium.

What can we learn from this example? Had we required that there exists no z € Z with Tz > 0
to exclude all prices which can’t possibly be part of any equilibrium, we would have obviously
discarded the prices ¢* = (1,1/2). However these prices - as we have just seen - are consistent
with some equilibrium and should therefore not be ruled out. Exactly this would have occurred,
however, by applying the criterion of no arbitrage. From the example we can see that it is not
necessary for an equilibrium that there exists no z € Z such that Tz > 0. Obviously such 2’s do
exist and yet we have an equilibrium because constraints prevent the advantageous use of these
opportunities by the agents of the economy.!”

One can take a geometric viewpoint on the requirement of no arbitrage. It is equivalent to
the condition that C NR3™\{0} = 0. This condition is not fulfilled in the equilibrium of the
example because there C is a cone with vertex x = (1,0). Therefore C can not have an empty
intersection with Ri“\{O}.

This example suggests the following weaker criterion for a world with portfolio constraints
described by (CONC).

Definition 2 (NUA) The financial market (q, A, Z) allows no unlimited arbitrage if there ex-
ists a vector k € C such that there is no z € Z with Tz > k.

In analogy to the unconstrained world we can characterize this requirement by the existence of
certain state prices. We assert the following

°To calculate an equilibrium apply Definition 8.2. p. 69, in Magill and Quinzii [28], replacing the condition
Z* € R7 by the condition 2% € Z.

'0We have to mention that problems of equilibrium mispricing with features similar to those in our example
have been already pointed out in the early literature on tax arbitrage.(Damon and Green [13], Ross [34]). In the
context of portfolio constraints this problem has been described by Basak and Croitoru [3] and in an earlier paper
by Charupat and Prisman [7]. These results - in particular the paper by Charupat and Prisman [7] - seem to
have remained largely unnoticed in the literature on asset pricing with portfolio constraints.
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Theorem 1 (q, A, Z) admits no unlimited arbitrage if and only if there exists a vector T € 'Rif
and a vector " € C such that 7T < 7r*, V7 € C.

Proof: Appendix. O

What does this theorem tell us about security prices that can be part of some equilibrium?
To get an economic interpretation it is useful to write the inequality, which appears in the
characterization of our theorem in a slightly less condensed form. In order to do so, let us

normalize 7 by 7o so that we get
1
<—> T = (1,7_'(1).
o

Let 7* = (7§, 77). Then the no unlimited arbitrage inequality can be written as
qz > TAz— (t5+ m1Ty) VzeZ, 1m7eC (3)

In general in a situation with convex constraints of the portfolio holdings the present value of
any traded security must be larger or equal to the present value of the income stream under the
state prices T = (1,71) corrected by the present value of additional transfers provided by the
limited arbitrage possibility induced by an appropriately chosen 7 € C.

A problem with this characterization is obviously that typically there are many 7* and 7 € Rif
fulfilling the inequality 77 < 77", V7 € C. Moreover these T € Rif will differ depending on the
7* that is chosen. Let II(7*) denote the set of all 7 € Ri‘f, which fulfill the inequality 77 < 77,
V7 € C for a given feasible 7* € C. The set of all potential state prices II, which are consistent
with the requirement of no unlimited arbitrage, is characterized by the union Ur«ccII(7*), i.e.
IT = Upeell(7*). If worse comes to worst, this union might be rather too large to provide a
reasonably sharp characterization. Moreover the whole construction looks quite bulky at first
sight. These remarks can perhaps best be seen in the following figure, illustrating an example
with so called "rectangular constraints” (Cvitani¢ 1997).

Insert Fig. 2 about here.

Figure2: Rectangular Constraints.

The examples have shown that many of the practically important constraint situations described
by (CONC) are cones or translations of them. For this important class of constraints we are
able to give a characterization of no unlimited arbitrage by using the vertex T'p of C.

Corollary 1 If Z is a cone with vertex p, the financial market (q, A, Z) admits no unlimited
arbitrage if and only if there exists a vector w € Riil such that 77 < 7l'p, V1 € C.

Proof: Appendix. O

Thus for constraint sets which are cones with vertex p we know that all state prices which allow
no unlimited arbitrage must lie somewhere in the set.

(C—Tp)° = {WGRS+1|7TT§ nTp, V7 €C} (4)
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which is just the negative conjugate cone of C — T'p.!' Thus in the case of cones or cone trans-
lations the set of all candidate state prices can be constructed by polarity from the knowledge
of the set C of feasible income transfers induced by financial markets.

This important special case, gives us an opportunity to relate our results to other characteriza-
tions of no arbitrage in the presence of constraints, which have been suggested in the literature.

The case almost exclusively dealt with there are constraint sets, which are cones. In particular
this case is investigated in the papers by He and Pearson [20], Jouini and Kallal [24], Jouini and
Kallal [25] and Huang [22].

For cones the condition of no unlimited arbitrage reduces to the familiar requirement of no
arbitrage, which is stated in the following

Corollary 2 If Z is a cone, (q,A,Z) admits no unlimited arbitrage if and only if there exists a
vector T € R:qril such that 77 < 0, V7 € C.

Proof: This is a direct consequence of Theorem 1 and Corollary 1. I

By (4) we see that in this case we get a direct generalization of the results for a world without
frictions. There the set of income transfers is a linear space and its polar cone is its orthogonal
complement.

If we normalize 7 as above, the no-arbitrage inequality implies that security prices must fulfill
the relation:

qz > ™Az VzeZ (5)

for a strictly positive 7y.

The economic interpretation of this inequality is that security prices are arbitrage free if and
only if they are larger or equal to the present value of the future income stream provided by the
corresponding securities traded on the financial markets. Potential discrepancies do not gener-
ate arbitrage opportunities because the constraints on the feasible portfolio positions prevent
investors from taking advantage of these opportunities.

This is the result which has repeatedly been obtained in the literature on portfolio constraints
independently by He and Pearson [20] and by Jouini and Kallal [24] and Huang [22]. Our
discussion shows that in fact a constraint set which is a cone is needed to get (5) as an appropriate
characterization of prices which can be part of some equilibrium. It can be seen as a special
case of no unlimited arbitrage with a k = 0.

Our inequality for cones is exactly the statement of Jouini and Kallal’s Theorem (2.1) (see Jouini
and Kallal [24]). Their theorem says that no arbitrage is equivalent to the existence of a positive
linear functional (in our case ), with the property that its restriction to C , lies below the
contingent claim pricing functional. This is exactly what is expressed in condition (5). Though
we don’t know the pricing functional for an arbitrary income stream y € C yet, we know that
in any way it must fulfill inequality (5). We see that more generally this condition has to be
modified and can be appropriately applied only for the case of constraints which are a cone.

"Tet X be a vector space which is equipped with the inner product (z,z*). Denote by X* its dual space.
Given a set S C X, the set S© = {z* € X* : (x,2*) <0 for all x € S} is called the negative conjugate cone of S
(see Luenberger [27, p. 157]).
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6 Asset Pricing and Portfolio Constraints

6.1 Pricing Arbitrary Income Streams

Having characterized security prices allowing no unlimited arbitrage by the existence of certain
state prices, how do we get a useful theory of asset pricing with financial constraints out of this
characterization?

The problem we have is that infinitely many state prices fulfill the NUA condition, each one
leading to a different present value for the income stream. Which one should we take to price
an arbitrary claim in the set of feasible transfers?

Note that the situation here differs from a situation with incomplete markets. There we can also
get an infinity of state prices m which characterize an arbitrage free security market (g, A). Yet
this doesn’t create a problem for asset pricing. Even if we have an infinity of state prices, with
incomplete markets all these 7’s have to agree on the subspace of income transfers induced by
(A), the marketed subspace (see Magill and Quinzii [28]).

To see this remember that in a frictionless world no arbitrage is equivalent to the existence of
a strictly positive vector of state prices m such that ¢ = mA. In a complete market 7 is unique,
in an incomplete market there will exist many positive 7 that fulfill the equality ¢ = wA. Their
common feature is that all of them assign the same present value to any y € (A).

Mathematically this means that the projections of all 7’s, which fulfill the no arbitrage condition,
onto the marketed subspace are equalized (see Magill and Quinzii [28, Corollary 12.6.]) whereas
projections onto the orthogonal complement of the marketed subspace will depend on the chosen
7. This is the reason why we are able to price income streams y which are replicable, i.e. y € (A),
while we are not able to price nonredundant income streams, i.e. y ¢ (A). For given security
prices ¢ the price of any income stream y € (A) is uniquely defined by

cq(y) = T1y =qz for any z € R’ such that y= Az (6)

(see Magill and Quinzii [28]). This relation lies at the heart of the famous pricing formulas of
modern finance, like for instance the celebrated Black-Scholes Option pricing formula (Black
and Scholes [6]). It says that the absence of arbitrage is equivalent to the requirement that there
exist positive state prices, such that the value of an income stream, which can be "replicated” by
the existing securities, must be equal to the value of its parts (under these state prices). If there
are infinitely many state prices fulfilling the no arbitrage equation, each of them will assign the
same present value to any replicable income stream (but different values to any y ¢ (4)).

Thus in a situation of incomplete markets, once we have characterized the absence of arbitrage
by the existence of certain state prices, we are ready to price any contingent claim, that can be
replicated.

In contrast, in a world with constraints things are not so simple since then there is in general no
reason why the projections of the 7’s fulfilling the NUA condition (3) onto the set of redundant
income streams should be equalized. Hence after having found a characterization theorem for
no unlimited arbitrage we are still not ready for pricing replicable income streams, since we have
among all the candidates to find the one which assigns the ”correct” value to a given (redundant)
income stream y. Thus in a world with portfolio constraints, for each redundant income stream
among all the potential state prices which characterize the (NUA)-condition, we have to find
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the ones which correctly prices this income stream. This is an additional problem, which arises
in the presence of portfolio constraints. Though no unlimited arbitrage can be characterized by
the existence of certain state prices, they are not directly useful for pricing arbitrary redundant
income streams since any of them will in general produce a different present value for the given
income stream.

The set of all feasible portfolios z € Z generates a subset C; C R¥ induced by (A, Z). Cy is the
set of all possible date 1 income streams which can be generated by investing in the J basic
securities, in the quantities available in Z. In analogy with the discussion in Magill and Quinzii
(28] we call this set the marketed subset.

Definition 3 The subset C; C R® generated by (A, Z) is called the marketed subset, where

Ci={yeR’|y= Az and z € Z}.

Our aim is to price a replicable income stream in the marketed subset and to keep to the spirit of
no arbitrage pricing by just implicitly invoking the monotonicity assumption on preferences. We
suggest an argument which recovers the correct state prices indirectly by duality. For a given
income stream in the marketed subset, which can be replicated, monotonicity of preferences
implies that among equivalent opportunities to hedge a given income stream in C; by basic
securities an investor will take the cheapest one. We will show below how this argument allows
us to price any y which can be replicated with basic securities by the ”correct” state prices,
without making reference to a specific investor decision. We can price any feasible income
stream without having to know a specific utility function.

A caveat is in order here. If we have a new asset with a payoff structure of an income stream
which can be replicated under constraints, naively pricing this new asset with reference to
replicating portfolios will be misleading if this new asset changes the marketed subset. This
seems to be largely ignored in the literature. In this case we would also have to know which
constraints for such an asset are relevant to decide whether it is redundant. Otherwise it is not
possible to price it. This problem can not arise in an incomplete market. There the fact that an
income stream y can be replicated implies that the introduction of an asset which pays y does
not change the span of the marketed subspace.

So what do we mean if we talk of pricing arbitrary income streams? On the one hand we
can assign a value to any income stream in the marketed subset. However without further
qualification we can not conclude from this fact that this would be the price of an asset paying
this income stream. This would require additional knowledge about relevant constraints for this
asset. On the other hand we can use our theory to check whether existing assets are consistently
priced relative to each other.!2

6.2 Arbitrage Free Pricing of Income Streams under Constraints

In the light of the previous discussion, we define the cost of a date one income stream y € RS
as the minimal cost that have to be incurred to hedge this income stream within the marketed

!2Note that modern asset pricing theory which uses arguments based on arbitrage considerations is in all its
variants only applicable to redundant claims. This is the main reason why a straightforward extension of modern
asset pricing theory to price financial innovations has turned out to be a problem of considerable difficulty.
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subset C1. This might not be possible. Thus we can only price income streams, which can be
replicated as a combination of basic securities, which generate Cy.

In general this problem is a non-linear programming problem (because Z can be any convex set),
which reduces in the case where Z is a polyhedral to a linear programming problem. In fact
most of the practical problems of interest can be formulated as linear programming problems.
The following discussion applies duality theory to show the connection between the vector of no
unlimited arbitrage state prices, the security prices ¢ and the value of an income stream y € Cy,
defined as the equivalent value of its minimal replication costs. Assume § is a security price
vector which allows no unlimited arbitrage. We define the price of an income stream 3y € C;
by13

c;(y) =mingz  forany z€ Zsuchthat y <Az (7)
The minimum cost hedging problem can be stated as
min gz

s.t. ze€Z (8)
Az — 3 E'Ri

Now for this problem we can assert the we the following

Theorem 2 If the financial market (q, A, Z) admits no unlimited arbitrage and there ezists a
Z € Z such that AZ >y, then there exists a solution to the optimal hedging problem (8), i.e.
there exists a z* € Z such that cz(y) = qz* and Az* > 7.

Proof: Appendix.[

Adding additional (weak) qualifications we can guarantee that the dual to this problem always
has a solution. From this dual problem we can determine the ”correct” state price vector to
price by no unlimited arbitrage for a given income stream which is replicable under constraints.
We have:

Theorem 3 If the financial market (q, A, Z) admits no unlimited arbitrage and
(a) either Z is polyhedral and there exists a z € Z such that A z >y

or

(b) there exists a 2 € Z such that A 2 > 7y,

the dual problem

max (m1y — sup(—gqz+m1Az))
mERT z€Z

has a solution and the optimal values of the primal and the dual problems coincide.

13The definition of the value of an income stream y as the minimum cost of super-replicating this income
stream with a constrained portfolio is a well established approach in the literature. (See Bensaid, Lesne, Pageés,
Scheinkmann [5], Edirisinghe, Naik, Uppal [19], Dermody and Rockafellar [14], [15]. Our aim is to show how this
approach is related to the concept of no unlimited arbitrage analyzed in Theoreml.
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Proof: Appendix.[]

What does this theorem tell us? It says that for any income stream 3y < AZ for some z € Z its
present value implied by the solution to the minimal cost hedging problem is the mazimal present
value of this income stream with respect to the (dual) state prices minus the value generated by
the limited arbitrage opportunity. This expresses the additional pricing element, which enters
the valuation formula in the presence of constraints.

Why can we identify the value of the function sup,.,(—qz + m1Az) (which is never smaller
than 0) with the value of limited arbitrage opportunities? Remember that our characterization
Theorem told us that no unlimited arbitrage is equivalent to the existence of a strictly positive
vector of state prices T € R:qrf and some 7* € C such that (after normalizing by the date zero
state price) we get the formula:

qz > m™Az— (to+ 71T]) Vz € Z, with 1" €C
This inequality can be rewritten as

(14 + 7177) = sup(—qz + m1 Az) (9)
2€Z
where the left hand side is just the present value of the consumption bundle 7* = (7§, 75).14

From this discussion we can derive two useful corollaries for two practically important cases of
constraints. Consider first the case where 7 is a cone with vertex p.

Corollary 3 If the financial market (q, A, Z) admits no unlimited arbitrage and Z is a convex
cone with vertex p and there exists a z € Z such that Az >y the optimal hedging problem (8)
has a solution. The dual problem can be stated as:

max (m1y + (¢ — m14)p)
st. (1,m1) € (C-Tp)° NRIT

If either condition (a) or (b) of Theorem 3 hold, the dual problem is solvable.

Proof: Appendix. O

As a special case we get the following corollary for the cone.

Corollary 4 If the financial market (q, A, Z) admits no unlimited arbitrage and Z is a convex
cone and there exists a z € Z such that Az >y the optimal hedging problem (8) has a solution.
The dual problem can be stated as:

max m1Y
sit. (1,7m1) € CONRIH

If either condition (a) or (b) of Theorem 3 hold, the dual problem is solvable.

" To relate equation (9) to the existing literature, in particular to Cvitani¢ and Karatzas ([11]), note that the
right hand side of the equation is known as the support function of —Z, which we denote by o_z(k), where
k =q—m1A (see Aubin [2]). Associated to the support function is the set of all &K € R’ where o_z(k) is finite.
This set is a convex cone and is called the barrier cone b(—Z) of —Z. If the dual problem has a solution o_z(k)
has to be finite and therefore ¢ — w1 A has to be an element of b(—Z2).
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Proof: Follows from the proof of Corollary 3. [J

Therefore whenever the constraint set is a cone (or a translation of a cone), pricing by applying
the principle of no unlimited arbitrage boils down to a quite straightforward procedure, which
requires two things. Construct the set of all state prices by polarity. Then for an income stream,
which is replicable, determine its value by solving the linear programing problem formulated in
the corollary. This procedure has been discussed in Huang [22] and applied to the pricing of
income streams in a model with an infinite time horizon and an event tree structure.

Another interesting conclusion can be drawn for both of these important cases. It turns
out that only in the case of a cone the pricing functional which emerges from the solution
of these problems has to be sublinear. Now we see which conditions are needed that com-
petitive security markets with portfolio constraints actually imply that the pricing functional

c;(y) = max RS (m1y —o_z(q —mA)) for arbitrary contingent claims is sublinear.

Corollary 5 If Z is a cone then the pricing functional aq(y) 1s sublinear.

Proof:. Appendix. [J

Note however that for arbitrary convex constraints the pricing functional is in general not sub-
linear. To see this consider the following

Example 9 Consider again a case without uncertainty. The payoff matriz of financial securities
is given by A = (1,1) and the constraint set is given by Z = [—-2,00) X (—00,2]. The security
prices are given by q = (1,1/2). Let y = 2. It is easy to see that the minimum hedging costs for
y are 1. Now consider y = 4 which would cost 3. Therefore the costs of y = 4 are more than
twice as much as fory = 2.

Insert Figure 3 about here.

Figure 3: For general convex constraints the contingent claim pricing functional need not be
sublinear.

From this discussion we see, that the sublinearity of the pricing functional is implied for con-
straints which are a cone but it is not implied in general.

From the perspective of asset pricing, we can claim that the pricing of redundant contingent
claims in a world with well-behaved frictions, is (almost) as straightforward as in a frictionless
world. Thus the assertion of Theorem 2 together with the corollaries for cones and translations
for cones can be the basis for more realistic, and nevertheless practical, security pricing formulas.

7 Optimal Portfolio Decisions and Asset Prices

So far we have used an argument which has invoked the preferences of investors only indirectly,
in the requirement that in any equilibrium there must be no unlimited arbitrage. We didn’t need
the utility function in any way for the pricing of income streams. We know that under the no
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unlimited arbitrage assumption, this can be done using the data (¢, A, Z) and the monotonicity
of the preferences only.

We now show that optimal decisions of investors and arbitrage free prices are intimately con-
nected in the world with portfolio constraints in almost the same way as in the frictionless
world. This discussion will also shed light on the unifying principles underlying competitive
asset pricing under portfolio constraints.

The budget set of an investor ¢ € Z in the finance model with assumption (CONC) is given by
Bi(q,w', A, Z) = {x ERSM |2 —wi < T, 2 e Z}. (10)

The investor’s optimal decision problem is given by
max {uz(x’) | 2% € Bi(q,u", A, Z)}. (11)

The existence of a solution to this problem is equivalent to the absence of unlimited arbitrage
in financial markets. Indeed we can assert:

Proposition 1 Problem (11) has a solution if an only if there is no unlimited arbitrage.

Proof: Appendix. O

The solution to the optimal decision problem of an investor is intimately related to prices which
allow no unlimited arbitrage. We now show that the arbitrage free pricing vectors of a given
income stream in the marketed subset must lie in the normal cone to the investor’s budget set
at this point. Before we do this we define

Definition 4 The normal cone to the budget set B* at x** is defined as

Npi(2™) = {m € R | n(a®™ — 2%) > 0,Va" € B'(q,w', A, Z)}

Now introducing a differentiability assumption on the utility function to simplify exposition we
claim:

Proposition 2 Assume u® is also differentiable. Thus Vu'(z') > 0 V2! € Bi(q,w*, A, Z). If 2%
is a solution to (11) then Vu'(x**) € Ngi(x™) and A\Vu'(z™) is a state price vector for X > 0.

Proof: Appendix. O

Compare the statement of the above proposition to the case of a frictionless world. There the
marketed subset is a linear space C = (T") and the polar cone is equal to its orthogonal comple-
ment and thus C® = (7). The normal cone at every consumption bundle in the boundary of
the budget set coincides with (T)* for any 7 € RS, N (T)+.15 Thus the pricing of an income
stream in this case becomes simpler, since we don’t have to choose a particular 7w € (T')* for the
income stream we wish to price. Any 7 € (T)* we wish to choose, will do the job. By contrast

5Note that because of monotonicity only boundary bundles will ever be demanded .
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in a world with frictions the appropriate state price vector will depend on the particular income
stream we want to price.

We have suggested to find the appropriate state price vector by solving the dual to the minimal
cost hedging problem for a given income stream. From proposition 2 we see that if we price
an arbitrary stream y € C by calculating the minimum replication costs, we have in general no
guarantee that there actually is an investor who values y that much. We know that every utility
gradient is some state price vector and that every no unlimited arbitrage state price vector is
among the feasible vectors in the dual of the minimal cost hedging problem. Still without using
any further information in general the minimum replication costs will give an upper bound for
the value of an income stream. However again for the important cases of cone constraints and
translations of cones for every state price we get as solution to the minimal cost hedging problem,
we will be able to find some investor fulfilling our assumptions, for whom this state price vector
is a utility gradient.

The analysis of the optimal investment problem gives us an opportunity to connect our analysis,
with the seminal approach by Cvitani¢ and Karatzas [11] to pricing contingent claims under
constraints (see also the textbook by Pliska [31]).

These authors suggest basically the following procedure. Consider an unconstrained financial
market economy £ = {u,w, A}. For given security prices ¢ we construct an artificial price vector
p=q—k € R’ where & is taken from the barrier cone obtained from some portfolio constraint
set which interests us. Thus we add some k € b(—Z). In this unconstrained economy we consider
a family of sets of feasible income transfers parametrized by k. Corresponding to the matrix T’
we define for each k € b(—Z) the matrix

_[-q+x
n= )

Thus
Cr = (Tx)-

The space (T) is a linear subspace of R°T1. For this economy we have a family of the budget
sets for the representative investor given by

Bi(q — k,w,A) = {xeRiH |2 —w < Tz, ZGRJ} (12)
The investor’s optimal decision problem is given by
max {u(z) | v € Bg(q — k,w, A)}. (13)

This is a standard problem, which has been extensively studied in the literature (see for instance
Magill and Quinzii [28]). Assuming differentiability for u(z), the first order conditions are

7 € (T,) and 7, € (Tx)*H (14)

where 7, := Vu(x}). Note that by Proposition 1 (13) has a solution if and only if there is no
arbitrage. Unfortunately there might be k € b(—Z) where the decision problem will have no
solution at all. In the sequel we thus have to restrict the set of admissible k € b(—Z2) to those

which are consistent with a solution of the investor’s problem, i.e. there exists a m, € Riil
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Normalizing this vector by the marginal utility of income at date 0 these conditions imply for
security prices the relation

P=q—Kk=Tx1A, V2 ERJJTHJ ERi+. (15)
From this equation it follows that the family of solutions will satisfy
q—mr1A€b(—Z). (16)

From Theorem 2, we know that any solution to the artificial, unconstrained problem found in this
way, will automatically be feasible for the corresponding constrained problem with constraint
set Z.

Now the contingent claim pricing problem can be attacked in the following way:

In £ = {u,w, A} the formula
q— k=T n,1A
implies that for given security prices ¢ — k the price of any income stream y € (A) is given by
cgy) = (q—K)z for any 2z € R7 such that y = Az
which implies a family of pricing formulas
cgy) ={(g—kK)z| Kk €b(=2)} = Tk 1y. (17)

Finding the no arbitrage value of y in & = {u,w, A, Z} is then a solution to the problem

sUp,(mx,1y — 0—z(K))
Thi1A=q—K
st. kKeb(-2)
Tkl € RiJr

(18)

The solution of (18) gives us an upper bound for the present value of y, but it does not guarantee
that there actually is an investor who values y that much. This problem was clearly recognized
by Chen [8] and Charupat and Prisman [7].

These remarks show that the approach suggested by Cvitani¢ and Karatzas [11] leads via a
different route to the same results as the approach suggested here. In the light of our model, it
becomes particularly transparent, why the barrier cone approach works. Moreover the analysis
shows that it can be used as well without reference to a specific utility function and only invoking
monotonicity. It is also not confined to representative investor setups. Once we know (g, A, Z)
we can construct the artificial financial market (¢ — x, A). By standard theory, no arbitrage in
the artificial market is equivalent to the existence of a strictly positive vector of state prices
T € R:qril such that w,Tx = 0. Then for any income stream y € C we can determine its
arbitrage free value by solving (18). For the practically important cases where Z is polyhedral,

this problem is a linear programming problem.
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& Conclusions

In this paper we have analyzed the pricing of contingent claims in security markets, where
investors are constrained by various trading restrictions, which can be described as a convex set.
We have given a characterization of no unlimited arbitrage in the simplest possible framework
and have derived the implications for the valuation of an arbitrary contingent claim. The
analysis shows that for problems, which are of particular relevance for practical purposes, this
task can be achieved by solving a standard linear programming problem, which can be set up
from the basic observable data of the economy. We have related this analysis to the optimal
decision problem of an investor and have shown the various relations between the properties of
an optimal solution to this problem and the arbitrage free values of contingent claims. This
opens a unified view on the different approaches to asset pricing under portfolio constraints
discussed in the literature and conveys their common underlying logic. We hope that these
results will prove useful for financial economists who are interested to get an overview of the
economics of portfolio constraints and security pricing, without going into the technicalities of
continuous time stochastic finance. Ultimately, however, this is a paper about asset pricing. It
is our hope that our results will prove useful for experts interested in practically developing and
implementing valuation techniques inspired by tools from a heavenly linear space, within the
constraints of an earthly convex set.
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9 Appendix

9.1 Figures
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Figure 1: With portfolio constraints not all arbitrage opportunities are necessarily eliminated
in equilibrium.
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Figure 2: Rectangular Constraints
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T1

7o

Figure 3: For general convex constraints the contingent claim pricing functional need not be
sublinear.
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9.2 Proofs
Lemma 1: The set C of feasible income transfers is a convex set containing 0.

Proof: C = {r e R5*! |1 =Tz, 2 € Z} C R®*! by Definition 1. Since 0 € Z and T is a linear
transformation C must also contain 0, hence be non-empty. Let 71 and 74 be in C and consider
A€ [0,1]. Then At1 4+ (1 = A\)72 = AXTz1 + (1 = \)T2z9 = T'(Az1 + (1 — X)z2). Since Z is convex,
Az1 + (1 = N)z2 isin Z, thus A71 + (1 — A)72 is in C hence C is convex. [

Lemma 2: If Z is a cone with vertex p, C' is a cone with vertex Tp.

Proof: If Z is a cone, z € Z implies that for all A > 0 the vector Az € Z. Thus Tz € C implies
T(Az) = ATz € C, thus C is a cone. If Z is a cone with vertex p, then Z — p is a cone. Hence
the set C' = {T e RS*! |7 =Ta,x € Z — p} is a cone. As C =C' + Tp it is a cone with vertex
Tp. O

Theorem 1: (q, A, Z) admits no unlimited arbitrage if and only if there exists a vector T € 'Rif
and a vector 7™ € C such that 7T < 7T*, V7 € C

Proof: Let 7 = {7* € C | 3 7 € C such that 7 > 7*}. Assume (g, A, Z) admits no unlimited ar-
bitrage. Then 7 is not empty. Denote by 7int(7 ) the interior of 7 with respect to the topology
induced on 7, take some T* € Tint(7) and consider the set
C' = {r € R¥*' | 7+ 1% € C}. Since we have assumed (NUA), ¢’ N RITIN\{0} = 0. ' is
a non-empty, closed, convex, set in R5t! since it is a translation of the set C, which is non-
empty, closed and convex by Lemma (1) and has a non-empty interior by (CONC). Let A be the
non-negative simplex in R5*t!. The simplex is a convex and compact subset of RS*! containing
no interior points of C’ since we have assumed that there is no unlimited arbitrage. We can
therefore apply a version of the separating hyperplane theorem (Magill and Quinzii [28, p. 73],

p.73). The separation theorem implies that there is a linear functional 0 # 7 € RS*! such that

sup 77 < inf 7T
Tel! TEA

Let K(C') = {\ | 7 € C" and X\ € RS} the convex cone generated by C’. This cone is
non-empty, closed and convex. As 0 € Tint(T) — 7* by assumption, K(C') N RI™\{0} = 0.
Therefore the above separating hyperplane theorem is applicable. Because C' C K(C'), the set
of 7's that separate K(C’) from A also separate C’ from A. Hence it suffices to show that there
isame Rif separating K (C') from A such that 77 <0 for all 7 € K(C').

Since 0 € K(C'), the separation inequality implies that 0 < inf;ca 7. Suppose now that 75 <0
for some state s € S and consider the transfer e; = (0,...,0,1,0,...,0) € A which is 1 in state
s and 0 otherwise. Then 0 < inf,ca 77 < Tey; = Ty < 0 which is a contradiction. Hence 7
€ Riil It remains to show that 77 < 0, Vr € K(C’). Suppose there is a 7 € K(C') such
that 77 > 0. Since K(C') is a cone it follows that A7 € K(C'), VA > 0. It is easy to see that
infrca 77 = min(71,...,Tg+1), which is finite. Now we can choose a sufficiently large A such
that Aw7T > inf,;ca 7. This is a contradiction.

Contrary to the result for unrestricted economies we can not turn the inequality into an equality.
The obvious reason is that 7 € C’ does not imply —7 € C’. Thus we get only the inequality 77 <
0, V7 € C' which can be rewritten as 77 < 77*, V7 € C.
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To prove the other direction assume thereisa 7 € C and 7 € 'Rif such that 77 < 77*, V1 € C.
This implies 77(7 — 7*) < 0 V7 € C. Because 7 € qurf we can conclude that 7 — 7% > 0 is
impossible for all 7 € C. And this is exactly the no unlimited arbitrage condition. [

Remark: We have imposed assumption (CONC) to cover a large class of practically important
constraint situations. Unfortunately also some rather strange cases are also compatible with
(CONC) and therefore we have to use the 7int(7) construction. Why do we have to take
7 € Tint(T)? If we took 7% € 7 but not in 7int(7 ), we could face the problem that K(C’)
meets ’Riﬂ not only in 0 but also in other points > 0 but not strictly larger than 0. Hence
we would get the weaker result that there has to exist a 7 € qufl such that 77 < 717*, V1 € C,
where some components of & might be 0.

Corollary 1: If Z is a cone with vertex p, the financial market (q,A,Z) admits no unlimited
arbitrage if and only if there exists a vector T € Rif such that 77 < 7lp, V1 € C.

Proof: It is sufficient to show that II(7) C II(Tp) Vr € C. If TI(7*) = () our assertion is trivially
true. Now take any 7* such that II(7*) # () and suppose there exists a 7 € II(7*) such that
7 ¢ II(Tp). This means that 7Tp < 77*. Now let 77 = (1+¢)(7* —Tp)+Tp = 7" + (7% — Tp)
where € > 0. By construction 7 € C. Premultiplying 7 by 7 yields

7t =7 + (Tt — 7)) > T

where the inequality follows from the assumption that 7 ¢ II(T’p). This result contradicts that
7 e II(t*). Hence II(7*) C II(T'p). O

Remark: As T'p is not necessarily in 7int(7) this Corollary implies that II(Tp) # ( if there is
a 7* such that TI(7*) # (., i.e. if the market admits no unlimited arbitrage.

Theorem 2: If the financial market (q, A, Z) admits no unlimited arbitrage and there exists a
zZ € Z such that Az > g, then there exists a solution to the optimal hedging problem (8), i.e.
there exists a z* € Z such that cg(y) = qz* and Az* > 7.

Proof: Let f(z) = gz. As f is a closed, convex and proper the recession function f0* of f
is given by (f0F)(x) = gx.'0 The set of all vectors = such that (f0%)(z) = go < 0 is called
the recession cone of f. Now let K = {z €R’|2€Z and Az > gj}. No unlimited arbitrage
implies that rec(f) Nrec(K) = {0}. Theorem 27.3. in Rockafellar (1970, p. 267) tells us that
the fact that f and K have no direction of recession in common is sufficient to guarantee that
the infimum is attained.

For the proof of Theorem 2 we apply a version of Fenchel’s duality theorem [33, Corollary 31.2.1.
p. 332]. The star symbol denotes conjugate (dual) operations. We denote by 1, the indicator
function of a set K, by ox the support function of the set K and by b(K) the barrier cone of
the set.

Theorem: (Fenchel): Suppose X C R"™ and W C R™, that B € L(X,W) is a continuous,
linear operator from X to W and that f: X — R U {oo} is a closed, proper, convexr function

Y5For a more general definition see Rockafellar (1970, p. 66).
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and g : W — R U{oo} is a closed proper concave function. Define

v+ = int[f(x) - g(Bo)
ve 1= sup [g"(w) — [*(Bw)]
weW*

v = vy if either of the following conditions is satisfied:

(a) There exists an x € ri(Domf) such that Bx € ri(Domg);'"

(b) There exists a w € ri(Domg*) such that B*w € ri(Dom f*).

Under (a) the supremum is attained at some w while under (b) the infimum is attained at some
x.

Proof: Rockafellar [33, Theorem 31.1., p. 327 and Corollary 31.2.1. p. 332]. O

Theorem 3: If the financial market (g, A, Z) admits no unlimited arbitrage and either

(a) Z is polyhedral and there exists a Z € Z such that A Z > y or

(b) there exists a 2 € Z such that A 2 > 7,

the dual problem

max (my — sup(—gz + mAz))
mEeRY z€Z

has a solution and the optimal values of the primal and the dual problems coincide.
Proof: Our primal problem is given by

inf,cps gz
s.t. 2€ 7 (19)
Az— gy € R:gr

Define the set E = {(z,y) | z € Z and y— y € R} and denote by I the J x J identity matrix.
Using this matrix we form the new (J 4 §) x J matrix

=[]

Thus we have 2 € Z and Az— § € RY < Bz € E. Now let ¢; denote the indicator function of
E. Thus we can rewrite the primal problem by

inf 72+ ¥ (B2)]

ZER

The function f in the theorem corresponds to gz, the function ¢ in the theorem corresponds
to =Y (Bz) := g(Bz) the operator A corresponds to our matrix B. f(z) is closed proper and

"ri denotes the relative interior of a set [33, p. 44].
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convex and by (CONC) the indicator function ¢ is also closed, proper and convex and hence
—1y is closed, proper and concave. (This follows from Aubin, Corollary 1.1. p. 13)

To derive the dual, we have to find the conjugate functions. The conjugate function to f(z) :=
qz is f*(k) = 4y (k). The conjugate function g*(k,7) = inf(, ,\ers+s (k2 + 7Y + VE(2,9))-
This function can be rewritten as

nf (52 +2(2) + inf (10 + s 5 (0)

or equivalently

- ZSE%’J(_"JZ —vy(2)) + yiergs(ﬂy T YRS 1y )

or equivalently
—oz(k) + iof (7 + Vs 4y (W),

Theset RY +y ={y € R |y—y € R{} ={a+ y € R¥ | v € RY}. Thus we get
§*(57) = —0 (k) + 7P + inf (77 + s (2)
zeRS +

Obviously we have

0 if #>0
—00 else

inf (72 + s (7)) = {

TERS
We thus conclude that
g*(k,m) = —0_z(k) + 7Y

where Domg* = b(—Z) x R;gr The conjugate of the operator B is simply the transposed matrix
BT. Now with these objects by applying the theorem, we can formulate the dual as

sup[—0_z (k) + 7Y — 5y (kK + TA)]

K,T0
Now clearly

0 if §g =k+7A
¢{E}(K+7TA) :{ 00 else

Thus if there is a finite solution it must hold that
Gz =kz+71A2z VzeR’
Thus we can write the dual problem as:
sup (77 — (k)]
s.t. TeRT
k=q—m1A €b(-2)

To prove the assertion we have to show that assumption (a) or (b) of the theorem are sufficient.
In (a) it is assumed that there exists a z € Z such that A z > y. This means that there exists a
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z € Domf such that Bz € Domg. As g is polyhedral by assumption (a), we may apply Fenchel’s
Theorem. In (b) it is assumed that there exists a 2 € Z such that A 2 > 7. Now the convexity
of Z implies that there is a 2* € ri(Domf) = ri(R”) such that 2* € ri(Domg) = ri(E). And
again we can apply Fenchel’s Theorem. [J

Corollary 3: If the financial market (q, A, Z) admits no unlimited arbitrage and Z is a convex
cone with vertex p and there exists a Z € Z such that AZ >y the optimal hedging problem (8)
has a solution. The dual problem can be stated as:

max (71y + (¢ — T1A)p)
st. (1,m) € (C=Tp)® N R;gfl

If either condition (a) or (b) of Theorem 3 hold, the dual problem is solvable.

Proof: When Z is a cone with vertex p, 0_z (k) = —kp. We have to show that the requirement
that g—m1 A € b(—Z) is equivalent to the requirement that (1,71) € (C—Tp)®. Assume g—m1 A €
b(—Z). Then 0_z(q — mA) = —(¢ — m1A)p. Thus

(—q+7mA)z < (—q+mAp VzeZ

This is the same as

which is the same as
(I,m)Tr < (1,m)Tp VT €C
and this is what we wanted to show. UJ
Corollary 5: If Z is a cone then the pricing functional ¢ (y) is sublinear.

Proof: If Z is a cone then ¢4(y) = Max;, cgs T1Y - Obviously Max;, cgs MY = QMax Ty
for any a > 0. Thus the pricing functional is homogeneous. Subadditivity follows from

max (7m1(y +v')) = max (m1y +my') < max my+ max my
71'167?,38‘r 71'167?,38‘r 71'167?,38‘r 71'1€Ri

which is a triangle inequality. O
Proposition 1: Problem (11) has a solution if an only if there is no unlimited arbitrage in the

financial market.

Proof: Assume first that (11) has a solution z**, so that

2™ € argmax {u'(2') | 2 € B'(q,w", A, Z)}
with 2 —w® = T2z%*. If there is unlimited arbitrage we can find a z* € Z such that T2* > z* —w".
Then 2¢ = w' 4+ T2* > ™. Since u' is strictly monotone, this implies u’(x?) > u’(2%*). Thus z'*
can not be optimal.

Now assume that there is no unlimited arbitrage. By Theorem 1 there exists then a strictly
positive vector of state prices with @ € quril and a vector 7* € C such that 77 < 777*, V1* €
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C. Take this vector @ and form a new set B'(%,w') = {:E’ € 'Riﬂ | 72 — wb) < 7_1'7'*}. Let
m' = (7" + w'). Then 2 € BY(7,w') implies 0 < 2% < m!/7s, s = 0,1,...S. Therefore
Bi(7,w') is clearly bounded and since the inner product is continuous, it is also closed. Because
it is a subset of RS*! it is compact by the Heine-Borel Theorem. For any z* € Bi(q,w?, A, Z)
there is a 2* € Z with 2! — w? < T2'. Because there is no unlimited arbitrage 77 < 77*
V7t € C, we have that 7(2' — w') < 77*, V7' € C so 2’ € B'(7,w"). This argument implies that
Bi(q,w', A, Z) C B(w,w'). By (CONC) and Lemma 1, B*(q,w', A, Z) is closed. Since B*(7,w?)
is compact, this implies that Bi(q,w’, A, Z) is compact, because a closed subset of a compact
set is compact. Since u’(z?) is continuous, the existence of a solution to (11) follows from the
Weierstrass theorem. O

Proposition 2: Assume u® is also differentiable. Thus Vu'(z%) > 0 Va' € B'(q,w", A, Z). If
™ is a solution to (11) then Vu'(z™) € Npi(2™) and A\Vu'(x™) is a state price vector for
A>0.

Proof: «' is continuous, strictly monotone and quasiconcave. By (CONC) B(q,w', A, Z) is
non-empty and convex. Thus (11) is a convex programming problem. By a theorem from
convex analysis (see for instance Magill and Quinzii 1996, p. 410) it follows therefore that (11)
has a solution if and only if

™ € BY(q,uw', A Z2)
Vul(z™) € Ngi(a™).

Since u’ is strictly monotone, it follows that Vui(z™*) € R, Now we have to show that

Vu'(z™) is indeed a state price vector. In order to do so, first observe that 2%* — w® is such that
there is no 7 € C with 7 > 2% — w’ = 7* because otherwise z* could not be a solution to the
maximization problem. The second important observation is that the normal cone to B’ at **
is identical to the closure of the set of all 7 € R;grf which solve the no unlimited arbitrage
inequality 77 < 77* for all 7 € C, i.e., Ngi(2™) = cl(II(z™ — w')) = cl(II(7*)). To see this,
consider the subset of the budget set D(q,w*, A, Z) = {mz eRIT |2t —wi =T2, 2 € Z}.

Because u’(z) is strictly monotone, * € D'(q,w', A, Z). Now clearly D C B’ and therefore
Npgi(x™) C Npi(z™). Since D¥(q,w', A,Z) = w' + C the normal cone to D(q,w*, A, Z) at x**
is the same as the normal cone to C at 7% = 2™ — W', i.e. Np:i(2™*) = Ne(a™ — w?) = Ne(7%).
According to our previous definition II(7*) = N¢(7*) ﬂ’Rif. Since C is closed N¢(7*) is closed.
Therefore cl(TI(1*)) = Ne(7™*) N RE™. To prove that Npi(2*) C d(II(7*)) = Npi(2™*) N R
it suffices to show that any m € Npgi(2™) is nonnegative. Suppose to the contrary that there
is a m € Npi(2™) such that s < 0 for some index s. Because m € Ngi(2%*) we know by the
definition of a normal cone that

n(x™ —2') > 0 Va' € B

Now we choose # = z* — e;. Of course * € B'. But m(#* —x) = 7s < 0. This is a
contradiction to the assumption m € Ngi(2™). Therefore any m € Ngi(2%*) is nonnegative and
Npi (™) C el(TI(7*)). To prove that cl(II(7*)) = Np: (™) "R € Npi(2™*) suppose there is a
nonnegative m € Npi(2™*) which is not in Ng:(2™*). This means there is an zg: € B? such that
m(x™* —xpi) < 0. For any xp: € B there exists a i € D such that xz: < 2. As the chosen
7 is nonnegative this implies mxg: < Tz pi. But this would mean that 72" < 7z p: and this is a
contradiction to the assumption that 7 € Np:(2*). So we may conclude Npi(z™*) = cl(TI(T*)).
Since Vaui(z™) € R we see that Vu(z*) € II(r*). Thus AVu!(2™) is a state price vector for
any A > 0 and this is what we wanted to show. [J
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